
Oracle Rdb7™

Release Notes

Release 7.0

®

Oracle Rdb Release Notes

Release 7.0

Copyright © 1984, 1996, Oracle Corporation. All rights reserved.

This software contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law.
Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation does not
warrant that this document is error free.

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are
’commercial computer software’ and use, duplication and disclosure of the programs shall be
subject to the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise,
programs delivered subject to the Federal Acquisition Regulations are ’restricted computer
software’ and use, duplication and disclosure of the programs shall be subject to the restrictions in
FAR 52.227-14, Rights in Data—General, including Alternate III (June 1987). Oracle Corporation,
500 Oracle Parkway, Redwood City, CA 94065.

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or
other inherently dangerous applications. It shall be the licensee’s responsibility to take
all appropriate fail-safe, back up, redundancy and other measures to ensure the safe use
of such applications if the programs are used for such purposes, and Oracle disclaims
liability for any damages caused by such use of the programs.

Oracle is a registered trademark of Oracle Corporation, Redwood City, California. DBAPack, Hot
Standby, Oracle7, Oracle CDD/Administrator, Oracle CDD/Repository, Oracle CODASYL DBMS,
Oracle Enterprise Manager, Oracle Expert, Oracle Rally, Oracle Rdb, Oracle RMU, Oracle RMUwin,
Oracle SQL/Services, Oracle Trace, and Rdb7 are trademarks of Oracle Corporation, Redwood City,
California.

All other company or product names are used for identification purposes only and may be
trademarks of their respective owners.

Contents

Send Us Your Comments . xi

Preface . xiii

1 Information About This Release

1.1 Changes to the Kit and the Installation . 1–1
1.1.1 Names of Oracle Rdb Kits . 1–1
1.1.2 Changes to the Installation Procedure . 1–1
1.1.3 GBLPAGES System Parameter Value Change 1–2
1.1.4 Oracle Rdb No Longer Checks LMF Information 1–2
1.2 Changes to the Method for Problem Reporting . 1–2
1.3 Changes in Names of Oracle Rdb Help Files, Command Procedures,

Release Notes, and Installation Guides . 1–3
1.4 Rdb Web Agent . 1–3
1.5 Supported Platforms and Network Protocols for PC Clients 1–4
1.5.1 New Query Performance Tuner . 1–5
1.5.2 New Parallel Backup Monitor . 1–5
1.5.3 Oracle RMUwin, Performance Monitor Available on Windows Only . . 1–5
1.5.4 Launching Applications from Oracle Enterprise Manager 1–6
1.6 New Hot Standby Database Option . 1–6
1.7 SGA API Available for Oracle Rdb . 1–7
1.8 New Features Affecting All Interfaces . 1–7
1.8.1 SQL_ALTERNATE_SERVICE_NAME Configuration Parameter 1–11
1.8.2 CREATE INDEX Optimization for Empty Tables 1–12
1.8.3 Eliminating Redundant Sort in Singleton Select 1–12
1.8.4 Changes in Cardinality Update Algorithm . 1–14
1.8.5 Support for XA Transactions . 1–15
1.8.5.1 Using Oracle Rdb with XA Transaction Managers 1–15
1.8.5.2 Relationship of Oracle Rdb Components to DECdtm 1–16
1.8.5.3 Relationship of Oracle Rdb Components to an XA Transaction

Manager . 1–17
1.8.5.4 Using SQL with an XA Transaction Manager 1–17
1.8.5.5 Recovering from Unresolved Transactions 1–23
1.8.5.6 Compliance Information . 1–23
1.8.5.7 Optional Features . 1–24
1.9 New Features in SQL . 1–24
1.10 New Features in Oracle RMU . 1–32
1.10.1 Enhancements to the RMU Convert Command 1–41
1.10.2 Just_Page Qualifier for RMU Restore and Recover Replaced with

Just_Corrupt Qualifier . 1–41
1.11 New Features in the Performance Monitor . 1–43
1.11.1 New Screens . 1–46
1.11.2 Enhancements to Existing Screens . 1–49

iii

1.12 System Metadata Changes . 1–50
1.12.1 Domain Changes . 1–50
1.12.2 Owner and Create/Alter Timestamps . 1–51
1.12.3 Optional RDB$WORKLOAD Table . 1–51
1.12.4 Modified System Tables . 1–52
1.12.5 Changes to RDB$TRANSFER_RELATIONS Table 1–56
1.12.6 Metadata LIST OF BYTE VARYING Changes 1–56
1.13 Application Compatibility Between Oracle Rdb Versions 1–57
1.14 Software Requirements . 1–57
1.15 Documentation for This Release . 1–57
1.15.1 Online Documentation Format . 1–58
1.15.2 Documentation for Oracle Rdb for OpenVMS . 1–59
1.15.3 Documentation for Oracle Rdb for Digital UNIX 1–60

2 Known Problems, Restrictions, and Other Notes

2.1 Known Problems and Restrictions in All Interfaces 2–1
2.1.1 Reinstall V7.0 After Installing Previous Versions 2–1
2.1.2 Monitor ENQLM Minimum Increased to 32767 2–1
2.1.3 Hot Standby Database Option Does Not Support Replication on

Digital UNIX . 2–1
2.1.4 Oracle Rdb Workload Collection Can Stop Hot Standby

Replication . 2–2
2.1.5 Support for Vested Images . 2–3
2.1.6 RMU Convert Command and System Tables . 2–3
2.1.7 Converting Single-File Databases . 2–3
2.1.8 Converting from Versions Earlier Than V5.1 . 2–3
2.1.9 Functionality Not Available on Digital UNIX 2–4
2.1.10 Record Caches and Exclusive Access . 2–7
2.1.11 Strict Partitioning May Scan Extra Partitions 2–7
2.1.12 Restriction When Adding Storage Areas with Users Attached to

Database . 2–8
2.2 SQL Known Problems and Restrictions . 2–8
2.2.1 Behavior of Journaling Using IMPORT . 2–9
2.2.2 Cannot Alter a Storage Map That Is Vertically Partitioned 2–9
2.2.3 SQL Does Not Display Storage Map Definition After Cascading Delete

of Storage Area . 2–9
2.2.4 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE

CASE . 2–10
2.2.5 Different Methods of Limiting Returned Rows From Queries 2–10
2.2.6 Suggestions for Optimal Usage of SHARED DATA DEFINITION

Clause for Parallel Index Creation . 2–11
2.2.7 %SQL-F-IND_EXISTS During Concurrent Index Definition 2–13
2.2.8 Side Effect When Calling Stored Routines . 2–13
2.2.9 Incorrect Processing of Subquery When Nested in FOR Cursor

Loop . 2–14
2.2.10 Nested Correlated Subquery Outer References Incorrect 2–15
2.2.11 Additional Usage Notes for Holdable Cursors 2–17
2.3 Oracle RMU Known Problems and Restrictions . 2–18
2.3.1 Default for RMU Checksum and CRC Qualifiers Changing in Future

Release . 2–18
2.3.2 Performance Monitor Collection Cells Are Reused 2–18
2.3.3 Collect Optimizer Statistics After Converting a Database to V7.0 2–19
2.3.4 RMU Parallel Backup Command Not Supported for Use with SLS . . . 2–19

iv

2.3.5 RMUwin, Rdb Performance Monitor Limit Motif Support 2–19
2.4 Known Problems and Restrictions in All Interfaces for Version 6.1 and

Earlier . 2–20
2.4.1 Restriction on Tape Usage for Digital UNIX V3.2 2–20
2.4.2 Support for Single-File Databases to Be Dropped in a Future

Release . 2–20
2.4.3 DECdtm Log Stalls . 2–20
2.4.4 You Cannot Run Distributed Transactions on Systems with

DECnet/OSI and OpenVMS Alpha Version 6.1 or OpenVMS VAX
Version 6.0 . 2–21

2.4.5 Multiblock Page Writes May Require Restore Operation 2–21
2.4.6 Oracle Rdb Network Link Failure Does Not Allow DISCONNECT to

Clean Up Transactions . 2–22
2.4.7 Replication Option Copy Processes Do Not Process Database Pages

Ahead of an Application . 2–22
2.5 SQL Known Problems and Restrictions for Oracle Rdb Version 6.1 and

Earlier . 2–23
2.5.1 INCLUDE SQLDA2 Statement Is Not Supported for SQL Precompiler

for PL/I in Oracle Rdb V5.0 or Higher . 2–23
2.5.2 SQL Pascal Precompiler Processes ARRAY OF RECORD Declarations

Incorrectly . 2–23
2.6 Oracle RMU Known Problems and Restrictions for Oracle Rdb Version 6.1

and Earlier . 2–24
2.6.1 Oracle RMU Commands Pause During Tape Rewind 2–24
2.6.2 TA90 and TA92 Tape Drives Are Not Supported on Digital UNIX 2–24
2.7 RDML Known Problems and Restrictions for Version 7.0 and Earlier 2–24
2.7.1 RDML Generates Undefined Symbol at Link Time Using Multiversion

Oracle Rdb . 2–24
2.8 Oracle CDD/Repository Notes of General Interest 2–25
2.8.1 Oracle CDD/Repository Compatibility with Oracle Rdb Features 2–25
2.9 Oracle CDD/Repository Restrictions for Oracle RdbV7.0 and Earlier 2–27
2.9.1 Multischema Databases and CDD/Repository 2–27
2.9.2 Interaction of Oracle CDD/Repository V5.1 and Oracle RMU

Privileges Access Control Lists . 2–27
2.9.2.1 Installing the Corrected CDDSHR Images 2–28
2.9.2.2 CDD Conversion Procedure . 2–29

3 Software Errors Fixed

3.1 Software Errors Fixed That Apply to All Interfaces 3–1
3.1.1 AIJ Switchover Suspension Prone to DBR-Induced Shutdown 3–1
3.1.2 Preventing Depletion of AIJ ARB Pool . 3–2
3.1.3 Process Starvation and Hang During AIJ Switchover 3–3
3.1.4 After-Image Journal File Switchover Race Condition Corrected 3–3
3.1.5 Failure to Open After-Image Journal No Longer Causes Locking

Problems . 3–3
3.1.6 DDL Operations on After-Image Journal Files No Longer Deadlock

with AIJ Switchover . 3–4
3.1.7 AIJ Inaccessible After Node or Cluster Failure or When the Database

Is Stopped with Abort=Delprc Qualifier . 3–4
3.1.8 User Processes Do Not Hibernate on AIJ Submission 3–4
3.1.9 Performance No Longer Degrades in Dynamic OR Optimization 3–5
3.1.10 Recovery and Fast Commit No Longer Results in Database

Corruption . 3–5

v

3.1.11 Recovery Process No Longer Hangs When Using Global Buffers 3–5
3.1.12 DBR No Longer Fails During REDO When Fast Commit Is

Enabled . 3–6
3.1.13 DBR No Longer Rolls Back Committed Transaction Data 3–6
3.1.14 DBR Now Validates Checkpoint During REDO 3–7
3.1.15 PAGE TRANSFER VIA MEMORY and Fast Incremental Backup No

Longer Cause PIO$MARK_SNUB Bugcheck . 3–7
3.1.16 Bugchecks at PIOFETCH$WITHIN_DB + 0784 Eliminated 3–7
3.1.17 Bugcheck at Transaction Commit Is Now Fixed 3–8
3.1.18 Now Can Create a Database with Lock Partitioning and Global

Buffers . 3–8
3.1.19 Oracle Rdb No Longer Fails on OpenVMS Alpha V7.0 3–8
3.1.20 Multiple Connections No Longer Cause Missing Oracle Trace Data . . 3–9
3.1.21 Nominal Record Length Now Stored in AIP for UNIQUE Indexes 3–9
3.1.22 Node Size Calculation for Unique Sorted Indexes 3–10
3.1.23 Performance Enhancement for Storage Maps and Mapped Indexes . . . 3–10
3.1.24 Memory Leak Plugged for Insert with Storage Maps 3–11
3.1.25 Update on Rows with Many Missing Values . 3–11
3.1.26 Long Records on Alpha Platforms No Longer Cause Problems 3–11
3.1.27 Record Compression on Alpha Platforms . 3–11
3.1.28 Database No Longer Hangs If Process Holding Logical Area Lock

Does Not Release Lock . 3–12
3.1.29 Excessive Root File I/O . 3–12
3.1.30 Applications No Longer Hang When Executive Mode ASTs Are

Disabled . 3–12
3.1.31 CREATE INDEX with SIZE IS Clause No Longer Returns Incorrect

Results . 3–12
3.1.32 LOCK_CONFLICT Error on Multiple Databases No Longer Leaves

Transaction Active . 3–13
3.1.33 System Metadata Index Corruption Fixed . 3–13
3.1.34 Checksum Errors on Alpha Processors Fixed . 3–14
3.1.35 Bugchecks at PIOAPF$AST + 78 Fixed . 3–14
3.1.36 Detach Failure No Longer Returns Invalid Request Handle 3–14
3.1.37 Error Details No Longer Lost from Remote Prefetch Operations 3–15
3.1.38 Error Details No Longer Lost from Remote Databases 3–15
3.1.39 Monitor No Longer Hangs After Certain Period of Activity 3–15
3.1.40 Read-Only Transactions No Longer Fail with Deadlocks on

SNAPSHOT CURSOR 0 . 3–16
3.1.41 Attached Inactive Processes Now Perform Global Checkpoint

Operations . 3–16
3.1.42 Undetected Global Checkpoint Deadlock Corrected 3–16
3.1.43 Null Fields Now Detected from Versioned Tables 3–18
3.1.44 System Table and Index Cardinalities Updated 3–19
3.1.45 Database Attach No Longer Leaves Extra Channel Assigned 3–19
3.1.46 Bugchecks at PSIISCAN$BWS_SEARCH_SCR + D1 No Longer

Occur . 3–19
3.1.47 Invalid Monitor Home Directory No Longer Causes Server

Failures . 3–20
3.1.48 Large Queries No Longer Bugcheck at RDMS$$GEN_ROOM+14 3–21
3.1.49 Bugcheck at RDMS$$EXE_CREATE_TTBL_FILE+5D Is Fixed 3–21
3.1.50 File Error Messages During Query Execution Are Now Correct 3–21
3.1.51 Sort and Merge Routines Are No Longer Called in Incorrect Order . . . 3–21
3.1.52 RDMS$BIND_WORK_VM Now May Be a Large Value 3–22

vi

3.1.53 VLDB Application Storage Areas No Longer Exhaust the Channel
Limit . 3–22

3.1.54 Data Converted from TEXT to BIGINT (QUADWORD) No Longer
Loses Precision with Large Values . 3–22

3.1.55 Changes to TIMESTAMP Literal and Character Format 3–22
3.1.56 External Functions Now Produce Valid Descriptor Lengths 3–23
3.1.57 SPAM Page Search Algorithm Is Now Optimized 3–25
3.1.58 RDMS$BIND_SEGMENTED_STRING_COUNT or

RDB_BIND_SEGMENTED_STRING_COUNT No Longer Causes VM
Corruption . 3–25

3.1.59 DEC MMS and CDD/Repository Report EXEDELPROC 3–26
3.2 SQL Errors Fixed . 3–26
3.2.1 LIBSQL Naming Conflict Corrected . 3–26
3.2.2 Full Outer Join with Derived Tables and IS NULL Predicate No

Longer Returns Incorrect Results . 3–26
3.2.3 Assignment Statement No Longer Uses Incorrect Value for

CURRENT_TIMESTAMP . 3–28
3.2.4 COMPUTED BY Column Value Now Returned Correctly 3–28
3.2.5 Computed By Column Now Set to Null During DROP TABLE

CASCADE . 3–30
3.2.6 Unexpected RDMS-F-BAD_SYM Error When Referring to

COMPUTED BY Columns Fixed . 3–31
3.2.7 FETCH No Longer Returns End-Of-Stream Condition on

NO_RECORD . 3–31
3.2.8 OUT Parameters Now Accessible with TRACE Statement 3–32
3.2.9 Enhanced Support for Views by ALTER DOMAIN and ALTER TABLE

Statements . 3–32
3.2.10 Reserved Tables No Longer Removed from Reserving List After

ALTER INDEX . 3–33
3.2.11 CREATE TRIGGER or CREATE MODULE Statement No Longer

Generates Unexpected SEGTOOBIG Error . 3–34
3.2.12 GET DIAGNOSTICS Statement Now Processed Correctly 3–34
3.2.13 RETURNED_SQLSTATE and RETURNED_SQLCODE No Longer

Incorrect After COMMIT, ROLLBACK, and SET TRANSACTION
Statements . 3–35

3.2.14 Queries with Expressions Containing Variables No Longer Return
Wrong Results . 3–35

3.2.15 Invalid DATE and TIMESTAMP Literals No Longer Accepted 3–36
3.2.16 Searched Update and Searched Delete Statements No Longer Promote

Locks Excessively . 3–36
3.2.17 Single Area WITH LIMIT Storage Map Now Used Correctly 3–36
3.2.18 ALTER STORAGE MAP Now Lets You Remove the USING

Column . 3–37
3.2.19 Unexpected UNRES_REL Error No Longer Occurs When Reserving

Views . 3–37
3.2.20 Initialize Handles and External Globals Command Line Qualifiers

Processed Correctly . 3–38
3.2.21 SQL Precompiler Now Consistent for C and COBOL Symbolic

Debugging . 3–39
3.2.22 Bugcheck Creating Complex Views Fixed . 3–39
3.2.23 SQL Now Generates Connection Name by Default 3–40
3.2.24 ALTER DATABASE Handles EXTENT Attribute Correctly 3–40
3.2.25 Now Can Create Storage Maps for Tables Containing Data 3–40
3.2.26 Views Containing SELECT Literal Now Return Correct Results 3–41

vii

3.2.27 SELECT DISTINCT from View Now Returns Correct Dbkey 3–42
3.2.28 Divide by Zero Fault Corrected . 3–42
3.2.29 Ctrl/Z from SQL HELP No Longer Erases Command Line Recall

Buffer . 3–42
3.2.30 Ctrl/Z in Multiscreen Help No Longer Returns RMS-F-EOF

Message . 3–42
3.2.31 Databases Created with MULTITHREADED AREA ADDITIONS Now

Correct . 3–43
3.2.32 EXPORT and IMPORT Statements Correctly Associate Constraints

on Multischema Databases . 3–43
3.2.33 Behavior of Global Buffering Using IMPORT Corrected 3–44
3.2.34 EXPORT and IMPORT Statements Handle Invalidated Outlines

Correctly . 3–44
3.2.35 Export and Import Files Now Can Use Any Extension 3–45
3.2.36 Now Can Import Interchange Files with Uppercase Extensions on

Digital UNIX . 3–45
3.2.37 IMPORT Statement No Longer Exceeds Memory 3–46
3.2.38 EXPORT and IMPORT Statement Problems with Procedures and

Functions in ANSI Databases Are Fixed . 3–46
3.2.39 SQL92 Intermediate Level UNIQUE Constraint Available 3–46
3.2.40 Constraints No Longer Fail When New Column Is Created Using

DEFAULT . 3–48
3.2.41 New Behavior for Domain Check Constraints and NULL 3–49
3.2.42 RDB$MESSAGE_VECTOR Psect Size Corrected for OpenVMS

Alpha . 3–50
3.2.43 CANTSNAP Errors Stop Occurring After Multiple Re-Ready

Requests . 3–50
3.2.44 Multistatement Procedure Using a Labeled FOR Statement No

Longer Bugchecks . 3–51
3.2.45 Dynamic SQL and TRIM No Longer Result in Access Violation 3–52
3.2.46 Intervals in Views No Longer Loop . 3–52
3.2.47 Using COALESCE with Aggregate Functions Now Returns Correct

Results . 3–52
3.2.48 SELECT . . . LIKE with Host Variable No Longer Fails 3–53
3.2.49 SQL No Longer Bugchecks at SQL$$SET_TERM_CHARS +

xxxxxx . 3–53
3.2.50 Bugcheck Error in SHOW TRANSACTION Fixed 3–54
3.2.51 ALTER TABLE Column Deletion Errors Fixed 3–54
3.2.52 Using Dynamic Statement Names No Longer Causes Memory

Leaks . 3–54
3.2.53 Now Can Modify Data Types When Constraints Are Defined 3–55
3.2.54 ALTER TABLE No Longer Causes BEFORE or AFTER UPDATE

Triggers to Execute Unexpectedly . 3–55
3.2.55 Simple CASE Expressions Are Evaluated Correctly 3–56
3.2.56 New Warning Message Is Generated for Redundant Column

References . 3–56
3.2.57 Value Restriction Removed for Indexes and Storage Maps 3–57
3.2.58 ACCVIO or Memory Consumption Loop Problems Using SQL Module

Language and Connections Are Fixed . 3–57
3.2.59 COMMIT with List Cursor Processing No Longer Bugchecks 3–60
3.2.60 COMMIT and ROLLBACK Are Now Ignored If There Is No

Transaction . 3–60
3.3 Oracle RMU Errors Fixed . 3–61

viii

3.3.1 RMU Convert Command Works Properly with Fixed-Size AIJ
Files . 3–61

3.3.2 RMU Open Command and Global_Buffers Qualifier Now Works
Correctly . 3–61

3.3.3 RMU Restore Just_Pages No Longer Leaves Pages with Bad Logical
Area . 3–61

3.3.4 Incremental Restore Now Marks Page Ranges as Changed 3–62
3.3.5 No Operator Request Issued When Loader Becomes Empty 3–63
3.3.6 Failed AIJ Backup No Longer Causes Recovery Problems 3–63
3.3.7 Performance Monitor Uses RDMS$BIND_STATS_DISABLED

Correctly . 3–67
3.3.8 Fixed-Size AIJ Backup to Tape No Longer Ignores Active

Checkpoints . 3–67
3.3.9 DBR No Longer Bugchecks During Extensible AIJ Backup 3–68
3.3.10 RMU Backup Command No Longer Deadlocks During Extensible AIJ

Backup . 3–68
3.3.11 Quiet-Point AIJ Backups Spanning Transactions Can Now Be

Applied . 3–68
3.3.12 Time Reduced for AIJ Journal Creation and Extension 3–68
3.3.13 Determining the True Size of Current .aij File 3–69
3.3.14 AIJ Rollforward Can Start from Quiet-Point AIJ Backup or

Quiet-Point Database Backup . 3–70
3.3.15 RMU Set Audit Stop Command Now Stops Auditing of RMU

Commands . 3–71
3.3.16 Bugcheck at RDMS$$KOD_ISCAN_START_SCAN + AC 3–72
3.3.17 Oracle RMU for Digital UNIX Now Translates Environment Variables

in .sqlrc Configuration File . 3–72
3.3.18 RMU Show Statistics with Input Qualifier No Longer Fails 3–72
3.3.19 Performance Monitor Starts Up More Quickly 3–73
3.3.20 Oracle RMU Now Clears Snapshot, SPAM Pages from CPT During

RMU Repair Command . 3–73
3.3.21 Corrupt Pages in Snapshot Areas Can Now Be Removed 3–73
3.3.22 RMU Monitor Logging No Longer Disables Over Time 3–73
3.3.23 RMU Analyze Cardinality Update Command Correctly Updates

Cardinality . 3–74
3.3.24 Changes to Header in RMU Analyze Output . 3–74
3.3.25 RMU Unload Command No Longer Pads VARCHAR Fields When

Producing Delimited Text Files . 3–74
3.3.26 RMU Checkpoint Command Now Allows No Wait for Completion 3–75
3.3.27 DBR No Longer Bugchecks Trying to Fetch Inconsistent Pages 3–75
3.3.28 Database Recovery No Longer Runs with DBKEY SCOPE IS ATTACH

Properties . 3–76
3.3.29 RMU Show After_Journal Backup_Context Command Properly

Creates and Deletes Process Global Symbols . 3–76
3.3.30 Now You Can Invoke Many Simultaneous Database Attach and

Detach Operations While Using the RMU Show Users Command 3–76
3.3.31 RMU Extract Command with Item=Security Qualifier Now Generates

Correct DCL Syntax . 3–77
3.3.32 RMU Extract Command with the Option Qualifier Processes

Keywords Correctly . 3–77
3.3.33 RMU Recover Resolve Can Now Resolve Transactions Originated from

Different Systems . 3–78
3.4 RdbPRE, RDML, and RDO Errors Fixed . 3–79
3.4.1 Alignment of Host Variable Smallint in the RDBPRE Preprocessor . . . 3–79

ix

3.4.2 RDO MATCHING Operator Can Now Find Date Matches 3–79
3.4.3 RDML/Pascal Now Correctly Generates Casting 3–79
3.4.4 RDMLVAXC.H Is Now Compatible with C++ . 3–79

4 Documentation Additions and Changes

4.1 Latest Software Enhancements . 4–1
4.2 Additions and Changes to the Oracle Rdb Documentation for Version 7.0

and Earlier . 4–1
4.2.1 Additions and Changes to the Oracle Rdb7 and Oracle CODASYL

DBMS: Guide to Hot Standby Databases Documentation 4–1
4.3 Oracle Rdb7 SQL Reference Manual . 4–2
4.3.0.1 Reorganization of the Oracle Rdb7 SQL Reference Manual 4–2
4.3.1 Incorrect Qualifier for SQL Module Language Documented 4–2
4.3.2 Incorrect Digital UNIX Link Command for SQL Precompiler

Documented . 4–2
4.4 Oracle RMU Reference Manual . 4–2
4.4.1 New Transaction_Mode Qualifier for Some Oracle RMU

Commands . 4–2
4.4.2 RMU Server After_Journal Stop Command . 4–3
4.4.3 Incomplete Description of Protection Qualifier for RMU Backup

After_Journal Command . 4–4
4.5 Changes to the Oracle Rdb7 Guide to Database Performance and

Tuning . 4–4
4.5.1 Error in Updating and Retrieving a Row by Dbkey Example 4–4
4.5.2 Error in Calculation of Sorted Index in Example 3-46 4–6

Index

Figures

1–1 Parts of an XA transaction . 1–15
1–2 Oracle Rdb with DECdtm . 1–16
1–3 Oracle Rdb with XA . 1–17

Tables

1–1 Keywords to Access Oracle Rdb Help Files . 1–3
1–2 Columns for RDB$WORKLOAD Table . 1–51
1–3 New Columns for RDB$COLLATIONS Table . 1–52
1–4 New Columns for RDB$CONSTRAINTS Table 1–52
1–5 New Columns for RDB$DATABASE Table . 1–52
1–6 New Columns for RDB$FIELDS Table . 1–53
1–7 New Columns for RDB$INDEX_SEGMENTS Table 1–53
1–8 New Columns for RDB$INDICES Table . 1–53
1–9 Changed Columns for RDB$INDICES Table . 1–54
1–10 New Columns for RDB$MODULES Table . 1–54
1–11 New Columns for RDB$QUERY_OUTLINES Table 1–55
1–12 New Columns for RDB$RELATIONS Table . 1–55
1–13 Changed Columns for RDB$RELATIONS Table 1–55

x

1–14 New Columns for RDB$ROUTINES Table . 1–55
1–15 New Columns for RDB$TRIGGERS Table . 1–56
1–16 New Columns for RDB$CATALOG_SCHEMA Table 1–56
1–17 Documentation for Oracle Rdb for OpenVMS . 1–59
1–18 Documentation for Oracle Rdb for Digital UNIX 1–60
2–1 Oracle CDD/Repository Compatibility for Oracle Rdb Features 2–25

xi

Send Us Your Comments

Oracle Corporation welcomes your comments and suggestions on the quality and
usefulness of this publication. Your input is an important part of the information
used for revision.

You can send comments to us in the following ways:

• Electronic mail — nedc_doc@us.oracle.com

• FAX — 603-881-0120 Attn: Oracle Rdb Documentation

• Postal service

Oracle Corporation
Oracle Rdb Documentation
110 Spit Brook Road, ZKO2-1/O19
Nashua, NH 03062-2698
USA

If you like, you can use the following questionnaire to give us feedback. (Edit the
online release notes file, extract a copy of this questionnaire, and send it to us.)

Name Title

Company Department

Mailing Address Telephone Number

Book Title Version Number

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please
indicate the chapter, section, and page number (if available).

xi

Preface

Oracle Rdb software is a general-purpose database management system based on
the relational data model.

Purpose of This Manual
This manual contains release notes for Oracle Rdb Version 7.0. The notes describe
changed and enhanced features; upgrade and compatiblity information; new and
existing software problems and restrictions; and software and documentation
corrections.

Note

The release notes are supplied on line in both PostScript and text form.

On systems running OpenVMS VAX or OpenVMS Alpha:

Text SYS$HELP:RDB070.RELEASE_NOTES

PostScript SYS$HELP:RDB070_RELEASE_NOTES.PS.

On systems running Digital UNIX:

Text /usr/lib/dbs/rdb/v70/doc/rdb070.release_notes

PostScript /usr/lib/dbs/rdb/v70/doc/rdb070_release_notes.ps

Intended Audience
This manual is intended for use by all Oracle Rdb users. Read this manual before
you install, upgrade, or use Oracle Rdb Version 7.0.

Structure
This manual consists of four chapters:

Chapter 1 Provides information about changes in installation procedures and
licensing and lists new and changed features for this release of Oracle
Rdb.

Chapter 2 Describes problems, restrictions, and workarounds known to exist in
Oracle Rdb.

Chapter 3 Describes known software errors in versions prior to Oracle Rdb
Version 7.0 that are fixed in Version 7.0.

Chapter 4 Provides information not currently available in the Oracle Rdb
documentation set.

xiii

Conventions
In this manual, Oracle Rdb refers to Oracle Rdb for OpenVMS and Oracle Rdb
for Digital UNIX software. Version 7.0 of Oracle Rdb software is often referred to
as V7.0.

The SQL interface to Oracle Rdb is referred to as SQL. This interface is the
Oracle Rdb implementation of the SQL standard ANSI X3.135-1992, ISO
9075:1992, commonly referred to as the ANSI/ISO SQL standard or SQL92.

Oracle CDD/Repository software is referred to as the dictionary, the data
dictionary, or the repository.

OpenVMS means both the OpenVMS Alpha and OpenVMS VAX operating
system.

This manual uses icons to identify information that is specific to an operating
system or platform. Where material pertains to more than one platform or
operating system, combination icons or generic icons are used. For example:

Digital UNIX This icon denotes the beginning of information specific to the
Digital UNIX operating system.

OpenVMS
VAX

OpenVMS
Alpha

This icon combination denotes the beginning of information
specific to both the OpenVMS VAX and OpenVMS Alpha
operating systems.

The diamond symbol denotes the end of a section of information
specific to an operating system or platform.

Although these icons appear in the ASCII-text version of this document, their
appearance is different.

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are also used in this manual:

Ctrl/x This symbol indicates that you hold down the Ctrl (control) key while
you press another key or mouse button (indicated here by x).

.

.

.

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

$ The dollar sign represents the DIGITAL Command Language prompt
in OpenVMS and the Bourne shell prompt in Digital UNIX.

xiv

1
Information About This Release

This chapter highlights changes to the Oracle Rdb kit and the installation
procedures and provides information on new and changed features for this
release. In addition, it lists the documentation for this release.

1.1 Changes to the Kit and the Installation
The following sections highlight changes to the installation procedure. Please
read the Oracle Rdb7 Installation and Configuration Guide for installation
procedure details.

1.1.1 Names of Oracle Rdb Kits
The names of the Oracle Rdb kits have changed from DECRDBxxxnnn to
RDBxxxnnn. The following list shows the name of each kit:

• RDB070: the standard Oracle Rdb for OpenVMS VAX kit

• RDBMV070: the multiversion Oracle Rdb for OpenVMS VAX kit

• RDBA070: the standard Oracle Rdb for OpenVMS Alpha kit

• RDBAMV070: the multiversion Oracle Rdb for OpenVMS Alpha kit

1.1.2 Changes to the Installation Procedure

OpenVMS
VAX

OpenVMS
Alpha

The sale of Rdb from Digital Equipment Corporation to Oracle Corporation has
necessitated some modifications to the installation procedure to conform to Oracle
licensing policy. Although the menu options have changed, the remainder of
the installation procedure has not, so users who have installed prior versions
of Oracle Rdb should see no significant differences other than selecting the
appropriate Oracle products to install.

As a Digital product, the installation procedure presented the following menu
with four installation options:

From the following menu, please select the type of DEC Rdb kit to
install. Choice CC (COMMON COMPONENTS) is included in all 3 DEC Rdb
installations and should be selected only when installing a product,
other than DEC Rdb, that requires the common components.

Please select the type of DEC Rdb kit you wish to install:

Enter DEV for DEC Rdb DEVELOPMENT (the default)
Enter INT for DEC Rdb INTERACTIVE
Enter RTO for DEC Rdb RUNTIME-ONLY
Enter CC for COMMON COMPONENTS

* Enter the kit type to install [DEV]:

Information About This Release 1–1

The Oracle Rdb installation procedure now presents you with the following menu:

Please select the Oracle Rdb products you are licensed to install.
Separate multiple choices with commas (Ex: 1,2,4).

(1) Oracle Rdb
(2) Programmer/2000 (Rdb Compilers)
(3) Hot Standby
(4) Power Utilities
(5) Common Components (For DBI)

* Enter the Oracle Rdb products you are licensed to install [ALL]:

Instead of the three DEC Rdb kit types, RUNTIME-ONLY, INTERACTIVE, and
DEVELOPMENT, the Oracle Rdb installation menu lists each of its licensed
products separately. Select only the products that you are licensed to install. ♦

1.1.3 GBLPAGES System Parameter Value Change

OpenVMS
VAX

OpenVMS
Alpha

The GBLPAGES system parameter value required for installing Oracle Rdb
differs on the OpenVMS VAX platform from the OpenVMS Alpha platform.

The number of required pages on OpenVMS VAX is 13,000.

The number of required pages on OpenVMS Alpha is 27,000.

The installation procedure checks for these new values.

Because the Oracle Rdb7 Installation and Configuration Guide for V7.0 had been
submitted to the printer at the time this information changed, the documented
number of required pages in the Oracle Rdb7 Installation and Configuration
Guide for V7.0 is incorrect. ♦

1.1.4 Oracle Rdb No Longer Checks LMF Information
Oracle Rdb no longer requires a Digital Product Authorization Key (PAK) and
no longer performs any License Management Facility (LMF) checking. The
installation procedure no longer asks you if you have an authorization key
registered and loaded.

1.2 Changes to the Method for Problem Reporting
As of March 1, 1996 all Digital Equipment Corporation support contracts for
Oracle Rdb customers expired. If you have a Digital support contract for Oracle
Rdb, contact your Oracle support representative.

Because support contracts have changed, Oracle Rdb no longer uses the SPR
method for software problem reporting. If you are using a version of Oracle
Rdb V6.1 or earlier, you may see messages that advise you to submit a Software
Problem Report (SPR). Please disregard these messages.

If an error occurs while you are using Oracle Rdb and you believe that the error is
caused by a problem with Oracle Rdb, contact your Oracle support representative
for technical assistance.

1–2 Information About This Release

1.3 Changes in Names of Oracle Rdb Help Files, Command
Procedures, Release Notes, and Installation Guides

Because of the purchase of DEC Rdb by Oracle Corporation and the change of
the product name to Oracle Rdb, names of many files, such as help files and
command procedures, have changed.

Table 1–1 shows the former Digital keywords for accessing help files and the new
Oracle keywords.

Table 1–1 Keywords to Access Oracle Rdb Help Files

Type of Help Digital Keyword Oracle Keyword

OpenVMS command line help DECRDB ORACLE_RDB

Digital UNIX command line
help

decrdb oracle_rdb

Reference page decrdb oracle_rdb

The release notes and installation guides have been renamed, as shown in the
following table:

From: To:

DECRDBvvv.RELEASE_NOTES RDBvvv.RELEASE_NOTES

DECRDBvvv.INSTALL_GUIDE RDBvvv.INSTALL_GUIDE

The following command procedures have been renamed:

From: To:

DECRDB$CONVERT_CDD$DATABASE.COM RDB$CONVERT_CDD$DATABASE.COM

DECRDB$CLUSTER_DEINSTALL.COM RDB$CLUSTER_DEINSTALL.COM

DECRDB$DEINSTALL_DELETE.COM RDB$DEINSTALL_DELETE.COM

DECRDB$IVPvv.COM RDB$IVPvv.COM

DECRDB$SETVER.COM RDB$SETVER.COM

DECRDB$SHOVER.COM RDB$SHOVER.COM

1.4 Rdb Web Agent
Oracle Rdb now includes the Rdb Web Agent, which lets you seamlessly invoke
SQL stored procedures and produces dynamic HTML pages using SQL. The Rdb
Web Agent is implemented using the Common Gateway Interface (CGI), enabling
it to function with any Web server that implements a proper CGI. (Some of the
servers supported include servers from CERN, Purveyor, Netscape and Oracle.)

You can develop applications using SQL and you can package and treat entire
multiscreen applications as single database objects, using the full range of
features, including security and recovery, offered by Oracle Rdb.

Information About This Release 1–3

To use the Rdb Web Agent, you must install a web server and an Oracle
SQL/Services client on the same system. You must install Oracle Rdb and the
Oracle SQL/Services server on an OpenVMS or Digital UNIX system. (The web
server and the Oracle SQL/Services client can be on the same system as Oracle
Rdb and the Oracle SQL/Services server, but it is not mandatory.)

Summary information about installing and configuring Rdb Web Agent is
provided in the online file rdbweb.install_guide. Comprehensive information
about configuring and using the Rdb Web Agent is provided on the software
media in HTML format. For more information, see Section 1.15.1.

Oracle Rdb also provides client software for Windows NT Intel, Windows NT
Alpha, OpenVMS, and Digital UNIX. For OpenVMS, the Windows NT and
Digital UNIX client software, and an accompanying readme.txt file are provided
on the Rdb Client kits CD–ROM. The OpenVMS client software is included in
the Rdb Web Agent kit.

1.5 Supported Platforms and Network Protocols for PC Clients
Oracle Rdb provides a program group called Oracle Enterprise Manager (OEM)
DBAPack that runs as a PC client and includes the following:

• Oracle Rdb Query Performance Tuner graphical user interface

For more information about the Query Performance Tuner, see Section 1.5.1.

OpenVMS
VAX

OpenVMS
Alpha

• Oracle Rdb Parallel Backup Monitor graphical user interface

For more information about the Parallel Backup Monitor, see Section 1.5.2. ♦

• Oracle RMUwin graphical user interface

For more information about Oracle RMUwin, see Section 1.5.3.

• Oracle Rdb Performance Monitor graphical user interface

For more information about the Performance Monitor, see Section 1.5.3.

• Oracle SQL/Services Manager graphical user interface

For more information, see the Oracle SQL/Services Server Configuration
Guide.

• Oracle Rdb OEM Configuration utility

For more information about the utility, see Section 1.5.4.

For information about installing the DBAPack and the PC client kits, see the
readme.txt file on the Rdb Client kit CD–ROM.

The PC clients, except for Rdb Web Agent, are supported on Windows NT Intel
3.5.1, Windows NT Alpha 3.5.1, Windows 95, and Windows 3.1. Rdb Web Agent
client software supports only Windows NT Intel 3.5.1 and 4.0 and Windows NT
Alpha 3.5.1 and 4.0.

The PC clients on all platforms support both TCP/IP and DECnet communication
protocols.

1–4 Information About This Release

1.5.1 New Query Performance Tuner
For V7.0, Oracle Rdb provides the Query Performance Tuner (QPT), a graphical
user interface that enables an Oracle Rdb database administrator to tune
individual queries for maximum performance. QPT generates a graphical model
of the optimization strategy for an SQL query, and enables the user to modify any
aspect of the solution (join order, access paths, join methods, execution strategy).
You can save the strategy in the database. Oracle Rdb applies it on subsequent
compilations and executions of the query.

The Query Performance Tuner requires Oracle Rdb V6.0 or later, although query
outline generation and minimization are supported only for Oracle Rdb V7.0 and
later versions.

For information about installing the DBAPack, including QPT, see the readme.txt
file on the Rdb Client kits CD–ROM.

After you install the DBAPack, you invoke QPT by double clicking on the icon.

For information about supported platforms and network support for each
platform, see Section 1.5.

1.5.2 New Parallel Backup Monitor

OpenVMS
VAX

OpenVMS
Alpha

Oracle Rdb provides the Parallel Backup Monitor, which lets you monitor the
progress of parallel backup operations, collect information for future operations,
and determine bottlenecks.

For information about installing the DBAPack, including the Parallel Backup
Monitor, see the readme.txt file on the Rdb Client kits CD–ROM.

After you install the DBAPack, you invoke the Parallel Backup Monitor by double
clicking on the icon.

For information about supported platforms and network support for each
platform, see Section 1.5. ♦

1.5.3 Oracle RMUwin, Performance Monitor Available on Windows Only
Oracle Rdb provides support for the new client/server versions of Oracle RMUwin
and the Performance Monitor on Windows NT Intel 3.5.1, Windows NT Alpha
3.5.1, Windows 95, and Windows 3.1.

Note

Oracle RMUwin and the Performance Monitor for Oracle Rdb V7.0 do
not support the DECwindows Motif software interface. These tools will
continue to support the Motif software on systems running Oracle Rdb
V6.1. See Section 2.3.5 for more information about Motif support.

For information about network support for each platform, see Section 1.5.

For information about installing the DBAPack, which includes Oracle RMUwin
and the Performance Monitor, see the readme.txt file on the Rdb Client kits
CD–ROM.

After you install the Oracle Enterprise Manager DBAPack, you invoke RMUwin
or the Performance Monitor by double clicking on the icons.

Information About This Release 1–5

1.5.4 Launching Applications from Oracle Enterprise Manager
You can now launch DBAPack applications from the Oracle Enterprise Manager
(OEM). The DBAPack program group now includes the OEM Configuration
utility, which lets you launch DBAPack applications and Oracle Trace and Oracle
Expert for Rdb from Oracle Enterprise Manager.

For more information, see the online help for the Oracle Rdb OEM configuration
Utility.

For information about installing the DBAPack, which includes the OEM
configuration utility, see the readme.txt file on the Rdb Client kits CD–ROM. For
information about supported platforms and network support for each platform,
see Section 1.5.

1.6 New Hot Standby Database Option
OpenVMS
VAX

OpenVMS
Alpha

Oracle Rdb V7.0 introduces the Oracle Hot Standby option which is a discrete,
separately-purchasable product that provides high-performance database
replication. The Hot Standby option prevents your Oracle Rdb database or Oracle
CODASYL DBMS database from becoming a single point of failure by physically
duplicating the database at a geographically remote standby site. In the event
of a node or cluster failure, the replicated hot standby database automatically
becomes the master database and takes over application processing.

Note

Neither the master database nor the standby database is affected by a
failure of the other; a system failure of the master database is isolated
from the hot standby database and vice versa.

The Hot Standby option automatically performs coordinated database
synchronization with high performance and minimal impact on system resources.
You need to intervene manually only to start the replication services and to fail
over applications to the standby database if a failure occurs. The Hot Standby
option does not require specific hardware to operate and you do not need to make
any changes to application coding.

For Oracle Rdb, you start the replication operation by entering a Replicate
command using Oracle RMU.

You can implement this feature on multiple operating system platforms. For
Oracle Rdb, the master and standby databases can be implemented on systems
running OpenVMS VAX, OpenVMS Alpha, or any combination of these operating
systems.

Refer to the Oracle Rdb7 and Oracle CODASYL DBMS: Guide to Hot Standby
Databases for complete information about the Hot Standby option.

Note

Online help for the Hot Standby option is available in HTML format
only. You can find the Replicate command reference information in
SYS$HELP:HOT_STANDBY.HTML

♦

1–6 Information About This Release

1.7 SGA API Available for Oracle Rdb
OpenVMS
VAX

OpenVMS
Alpha

Oracle Rdb provides a system global area (SGA) application programming
interface (API) which gives internal applications and third-party developers a
supported way to retrieve database performance statistics.

Oracle Rdb maintains an extensive set of online performance statistics that
provide valuable dynamic information regarding the status of an active database.
The SGA API provides a way to access these statistics quickly.

The Oracle Rdb SGA API is provided as a saveset on the Oracle Rdb kit. The
saveset is named RDBSGA_xx_ptt.BCK, where:

xx Oracle Rdb version. For example, 70 for Version 7.0

p Platform–V for VAX, or A for Alpha

tt Kit type–MV for multiversion, or S for standard

To use the API, restore the saveset to your working directory with the following
command:

$ BACKUP/LOG [kit_directory]RDBSGA_xx_ptt.BCK/SAVE []*.*;0

When you have restored the saveset, read the $$$RDBSGA_API.README file for
further instructions. ♦

1.8 New Features Affecting All Interfaces
This section summarizes new and changed features that affect all interfaces to
Oracle Rdb. These features include:

• New on-disk structure for B-tree (sorted) indexes

In V7.0, you can specify that Oracle Rdb use a new ranked B-tree structure.
The new structure allows better optimization of queries, particularly queries
involving range retrievals. Oracle Rdb makes better estimates of cardinality,
reducing disk I/O and lock contention. For more information, see the Oracle
Rdb7 Guide to Database Design and Definition and Oracle Rdb7 SQL
Reference Manual.

• Duplicates compression

If a ranked sorted index allows duplicates, you can store many more records
in a small space by using duplicates compression. When you do, Oracle
Rdb uses byte-aligned bitmap compression to represent the dbkeys for the
duplicate entries, instead of chaining the duplicate entries with uncompressed
dbkeys. In addition to the savings in storage space, you minimize I/O,
increasing performance. For more information, see the Oracle Rdb7 Guide to
Database Design and Definition.

• Improved duplicate detection

If a unique index is defined on a table and you try to insert a duplicate record,
Oracle Rdb intercepts the action more quickly. Because Oracle Rdb rolls back
precreated duplicate nodes, the database will not have excess locked free
space.

• Specifying an alternate TCP/IP service

Information About This Release 1–7

By specifying an alternate TCP/IP service, you can access different versions
of OpenVMS databases through TCP/IP from an OpenVMS or Digital UNIX
client. You can also use the alternate service for any other special access
requirements that are not met by the default TCP/IP service. For more
information, see Section 1.8.1.

• CREATE INDEX optimization for empty tables

Oracle Rdb avoids scanning all areas if a table is empty and if the table was
created in the current transaction. Oracle Rdb maintains an internal list of
newly created tables to determine whether or not the table contains data. For
more information, see Section 1.8.2.

• Support for quadword TSNs and CSNs

Prior to this release, Oracle Rdb represented a transaction sequence number
(TSN) or a commit sequence number (CSN) as a longword value. The
maximum value for a TSN or CSN was 4,294,967,295. Beginning with this
release, Oracle Rdb represents both TSNs and CSNs as quadword values, in
the following decimal format:

high longword : low longword

The high longword can hold a maximum user value of 32768 (215) and the low
longword can hold a maximum user value of 4,294,967,295 (232). A portion of
the high-longword is used by Oracle Rdb for overhead.

When you specify a TSN or CSN, you can omit the high longword and the
colon if the TSN or CSN fits in the low longword. All of the following are
valid TSN or CSN input values:

0:444
444
2:555

The following shows a series of TSN and CSN values, in ascending order:

0:1
0:4294967295
1:0
1:4294967295
2:0

The TSN values are not represented with this format when you use the
RdbAlter commands. See the documentation for the RdbAlter Deposit and
RdbAlter Display commands in the Oracle RMU Reference Manual for details.

Digital UNIX • Support for distributed transactions that conform to the XA specification

Oracle Rdb provides support for transactions that conform to the XA
specification of the X/Open standard. For more information, see Section 1.8.5.
♦

• New logical name, RDMS$BIND_PRESTART_TXN, and configuration
parameter, RDB_BIND_PRESTART_TXN

This logical name and configuration parameter allow you to establish the
default setting for pre-started transactions outside an application. For more
information, see the Oracle Rdb7 Guide to Database Performance and Tuning.

• New logical name, RDM$BIND_RUJ_ALLOC_BLKCNT, and configuration
parameter, RDB_BIND_RUJ_ALLOC_BLKCNT

1–8 Information About This Release

This logical name and configuration parameter define the .ruj file initial
allocation size, expressed in blocks. The minimum value is 1, the maximum
value is 2 billion, and the default value is 127 blocks. For more information,
see the Oracle Rdb7 Guide to Database Performance and Tuning.

• Optimizer statistics

Oracle Rdb collects new statistics that help the optimizer to significantly
reduce errors in cost and cardinality estimation, generally improving the
query optimization process and increasing the probability of finding the
optimal solution for each query.

The statistics also reduce the volatility (degree of change) in query strategy
generation exhibited by the optimizer when you upgrade to a higher Oracle
Rdb version. The use of new statistics by the optimizer translates into overall
improvement in performance across the query workload.

The new statistics capture the distribution of data values in interesting
column groups of various base tables and the clustering of data in the sorted
and hashed indexes, as well as in the table areas. The interesting column
groups, called workload column groups, are identified from various queries
of a workload.

The optimizer statistics, including the new statistics, can be classified
into three categories: basic, workload, and storage statistics. For more
information, see the Oracle Rdb7 Guide to Database Performance and Tuning.

• Row-level memory cache

The row-level memory cache feature allows frequently referenced rows to
remain in memory even when the associated page has been flushed back to
disk. This saves memory usage because only the more recently referenced
rows are cached versus caching the entire buffer.

You can specify whether or not large memory is used to manage the row
cache. Large memory allows Oracle Rdb to use as much physical memory as
available and to dynamically map it to the virtual address space of database
users. It provides access to a large amount of physical memory through small
virtual address windows.

For more information, see the Oracle Rdb7 Guide to Database Performance
and Tuning and the Oracle Rdb7 SQL Reference Manual.

OpenVMS
Alpha

• A new type of global section, system space buffers (SSB)

The system space global section is located in the OpenVMS Alpha system
space, which means that a system space global section is fully resident, or
pinned, in memory and does not affect the quotas of the working set of the
process. As a result, a process referencing a system space global section can
have up to 256 Mb of resident working set space.

For more information, see the Oracle Rdb7 Guide to Database Performance
and Tuning. ♦

• Index-only retrieval for hashed indexes

Oracle Rdb V7.0 uses an index-only strategy to retrieve the data from the
Ikey segments of a hash index, where all the necessary data records are
defined. Thus, it eliminates the extra I/O to fetch the data record using the
database key (dbkey) from the index node, and significantly improves the
performance.

Information About This Release 1–9

The following example shows the index-only retrieval strategy using the hash
index EMPLOYEES_HASH, over sorted index EMP_EMPLOYEE_ID. The
cost of the chosen solution is less than the sorted counterpart.

SELECT R.EMPLOYEE_ID FROM EMPLOYEES R
WHERE R.EMPLOYEE_ID = ’00166’ OR R.EMPLOYEE_ID = ’00177’;

Solutions tried 4
Solutions blocks created 2
Created solutions pruned 1
Cost of the chosen solution 0.0000000E+00
Cardinality of chosen solution 1.9900000E+00
Conjunct Index only retrieval of relation EMPLOYEES
Index name EMPLOYEES_HASH [1:1...]2

EMPLOYEE_ID
00166
00177
2 rows selected

• Eliminating redundant sort in singleton select

Oracle Rdb V7.0 eliminates the redundant sort that the optimizer applies
when the select expression specifies ORDER BY to order the output of two
streams where one stream returns one single row (singleton) and the other
stream uses an ordered B-tree index retrieval. See Section 1.8.3 for more
information.

• Eliminating extra sorts

The optimizer now uses a minimal number of sorts when processing queries
with GROUP BY, ORDER BY, and DISTINCT clauses. For example:

SQL> SELECT SUM(MAXIMUM_SALARY) FROM
cont> (SELECT DISTINCT MAXIMUM_SALARY FROM JOBS) AS MS
cont> GROUP BY MAXIMUM_SALARY;
Aggregate
Merge of 1 entries
Merge block entry 1
Reduce Sort Get Retrieval sequentially of relation JOBS

• 64-Bit cardinality

Oracle Rdb V7.0 now handles tables and indexes with approximately 4
billion rows and beyond. This new feature is made possible by increasing the
cardinality size to 64-bit from 32-bit.

• Changes in cardinality update algorithm

In V7.0, Oracle Rdb has revised its update algorithms to reduce the I/O
performed to update cardinalities when cardinality collection is enabled.

See Section 1.8.4 for more information.

• Zigzag match join enhancements for better performance

Oracle Rdb now uses zigzag skip on the outer loop as well as the inner loop.
In addition, it uses an intermediate result table for the equal-key group join
instead of index rescan. The following example demonstrates this capability
and includes output from the RDMS$DEBUG_FLAGS logical name:

1–10 Information About This Release

SQL> SELECT * FROM EMPLOYEES E, SALARY_HISTORY S
cont> WHERE E.EMPLOYEE_ID = S.EMPLOYEE_ID;
Conjunct
Match

Outer loop (zig-zag)
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0]

Inner loop (zig-zag)
Get Retrieval by index of relation SALARY_HISTORY
Index name SH_EMPLOYEE_ID [0:0]

1.8.1 SQL_ALTERNATE_SERVICE_NAME Configuration Parameter
In previous versions, users of the TCP/IP network protocol were restricted to
using the default rdbserver service for all remote database access.

Oracle Rdb V7.0 includes a new configuration parameter, SQL_ALTERNATE_
SERVICE_NAME, that lets you specify an alternate TCP/IP service. This is
especially useful for accessing different versions of OpenVMS databases through
TCP/IP from an OpenVMS or Digital UNIX client. You can also use it for any
other special access requirements that are not met by the default rdbserver
TCP/IP service.

The following example shows the line you add to your client configuration file to
use the new service myservice, which you have defined for TCP/IP:

SQL_ALTERNATE_SERVICE_NAME myservice

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS systems, you must use UCX to create your new service. Refer to
the Oracle Rdb7 Installation and Configuration Guide for more information on
setting up services in UCX. To set up a service for accessing different versions
of Oracle Rdb databases (V6.1 in this example), you must make sure that the
LOGIN.COM of the user name defined for the service contains the following lines:

$ DEFINE RDBSERVER SYS$SYSTEM:RDBSERVER61.EXE
$ DEFINE RDMS$VERSION_VARIANT 61 ♦

Digital UNIX On Digital UNIX systems, if you use an alternate service to access an OpenVMS
database, you must define the service on your local node and on the remote
OpenVMS node. On your local node, add the service to the /etc/services file. On
the OpenVMS node, use the UCX utility to define the service.

On Digital UNIX systems, if you use an alternate service to access a Digital UNIX
database, you must define the service in the /etc/services file on the local and
remote nodes. You must also add the service (myservice, in this example) to the
remote system’s /etc/inetd.conf file, as shown in the following example:

myservice stream tcp nowait dbsmgr \
/usr/lib/dbs/sql/v70/lib/rdbserver v70/rdbserver

In addition, on the remote node you must send a hangup to the inet daemon to
reinitialize it so that it will see your addition. Use the following commands to do
this:

ps ax | grep inetd
(results will show the PID running inetd - for example, 515)

kill -HUP 515

Please note that the user name for your alternate service must be dbsmgr.

Information About This Release 1–11

If you need to specify an alternate server configuration file for your service,
rdbserver requires an optional command line. To use /usr/jones/sql.conf instead of
the default sql.conf for dbsmgr, you specify it as shown in the following example:

myservice stream tcp nowait dbsmgr \
/usr/lib/dbs/sql/v70/lib/rdbserver \
v70/rdbserver -s /usr/jones/sql.conf ♦

1.8.2 CREATE INDEX Optimization for Empty Tables
In previous versions, a CREATE INDEX statement checked whether or not a
table was empty by fetching the first row. If the table was empty, Oracle Rdb
could avoid collection and sorting of the data and creation of the index. This
optimization works very well in uniform storage areas where the SPAM pages
allow fast access to the first row.

However, in mixed-format storage areas, each page must be read and checked for
an occurrence of a row for the table. In particular, when the table is partitioned
across many areas, CREATE INDEX could execute many I/O operations to
determine whether or not a table was empty.

V7.0 includes an optimization within CREATE INDEX to avoid this area scan
for all areas. If the table was created in the current transaction, sufficient
internal information exists for Oracle Rdb to know if a table does not contain
data. Oracle Rdb maintains an internal list of newly created tables to support
this optimization.

If you attach to the database using RESTRICTED ACCESS, Oracle Rdb carries
this optimization through until you disconnect from the database. Restricted
access is necessary so that Oracle Rdb can guarantee that no other process has
updated the table after it was created during this session. Because the IMPORT
statement, by default, attaches to the new database using RESTRICTED
ACCESS, this optimization helps improve the import performance of large
databases. In particular, fewer I/O operations are now needed to import a table
that is placed using a hashed index if that table is mapped to mixed-format areas.

In some cases where applications create and drop many tables, the maintenance
of the internal list of new tables may not be desirable. In those cases, you
can define the logical name RDMS$USE_OLD_COUNT_RELATION or the
configuration parameter RDB_USE_OLD_COUNT_RELATION to disable this
optimization. Only the existence of the logical name or configuration parameter
is required; it can be defined as any value.

1.8.3 Eliminating Redundant Sort in Singleton Select
Oracle Rdb V7.0 eliminates the redundant sort that the optimizer applies when
the select expression specifies the ORDER BY clause to order the output of
two streams where one stream returns one single row (singleton) and the other
stream uses an ordered B-tree index retrieval.

Singleton means a query stream that outputs a single row, such as scalar
aggregate, direct (unique) key lookup, and dbkey retrieval. The following
examples show different types of query streams.

The following example shows a query with scalar aggregate stream:

1–12 Information About This Release

SQL> SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME,
cont> (SELECT AVG(SALARY_AMOUNT) FROM SALARY_HISTORY)
cont> FROM EMPLOYEES
cont> ORDER BY EMPLOYEE_ID LIMIT TO 3 ROW;
Cross block of 2 entries
Cross block entry 1
Aggregate Get Retrieval sequentially of relation SALARY_HISTORY

Cross block entry 2
Firstn Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0]

EMPLOYEE_ID FIRST_NAME LAST_NAME
00164 Alvin Toliver 2.652896707818930E+004
00165 Terry Smith 2.652896707818930E+004
00166 Rick Dietrich 2.652896707818930E+004

The following example shows a query with a direct lookup stream:

SQL> CREATE UNIQUE IND EMP_LAST_FIRST ON EMPLOYEES (LAST_NAME, FIRST_NAME);
SQL> DROP INDEX EMP_EMPLOYEE_ID;

SQL> SELECT LAST_NAME, FIRST_NAME, J.JOB_CODE FROM EMPLOYEES E, JOB_HISTORY J
cont> WHERE E.EMPLOYEE_ID = J.EMPLOYEE_ID AND
cont> E.LAST_NAME = ’Ziemke’ and E.FIRST_NAME = ’Al’
cont> ORDER BY E.EMPLOYEE_ID;

Cross block of 2 entries
Cross block entry 1
Get Retrieval by index of relation EMPLOYEES
Index name EMP_LAST_FIRST [2:2] Direct lookup

Cross block entry 2
Leaf#01 BgrOnly JOB_HISTORY Card=274
BgrNdx1 JH_EMPLOYEE_ID [1:1] Fan=17

The following example shows a query with multiple CROSS streams:

SELECT E.EMPLOYEE_ID,
(SELECT COUNT(*) FROM JOB_HISTORY),
(SELECT COUNT(*) FROM JOB_HISTORY JH

WHERE JH.EMPLOYEE_ID=E.EMPLOYEE_ID),
(SELECT COUNT(*) FROM DEGREES),
(SELECT COUNT(*) FROM DEGREES D

WHERE D.EMPLOYEE_ID = E.EMPLOYEE_ID)
FROM EMPLOYEES E LIMIT TO 5 ROW;

Match
Outer loop
Cross block of 4 entries
Cross block entry 1
Aggregate Index only retrieval of relation DEGREES
Index name DEG_COLLEGE_CODE [0:0]

Cross block entry 2
Aggregate Index only retrieval of relation JOB_HISTORY
Index name JH_EMPLOYEE_ID [0:0]

Cross block entry 3
Firstn Index only retrieval of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0]

Cross block entry 4
Aggregate Index only retrieval of relation JOB_HISTORY
Index name JH_EMPLOYEE_ID [1:1]

Inner loop (zig-zag)
Aggregate Index only retrieval of relation DEGREES
Index name DEG_EMP_ID [0:0]

The following example shows a query with a dbkey retrieval stream:

CREATE VIEW V1 AS SELECT EMPLOYEE_ID,LAST_NAME FROM EMPLOYEES;
DECLARE :DBK BIGINT;
SELECT DBKEY INTO :DBK FROM V1 WHERE EMPLOYEE_ID =’00166’;

Information About This Release 1–13

SELECT LAST_NAME, FIRST_NAME, J.JOB_CODE FROM EMPLOYEES E, JOB_HISTORY J
WHERE E.EMPLOYEE_ID = J.EMPLOYEE_ID AND E.DBKEY = :DBK

ORDER BY E.EMPLOYEE_ID;
Cross block of 2 entries

Cross block entry 1
Conjunct Firstn Get Retrieval by DBK of relation EMPLOYEES

Cross block entry 2
Leaf#01 FFirst JOB_HISTORY Card=274
BgrNdx1 JH_EMPLOYEE_ID [1:1] Fan=17

1.8.4 Changes in Cardinality Update Algorithm
As rows are deleted or inserted into a table, or as key values change for indexes,
Oracle Rdb collects cardinality statistics for use by the optimizer. At each
commit, a decision is made to write these collected statistics to the tables
RDB$RELATIONS, RDB$INDICES and RDB$INDEX_SEGMENTS or to cache
them until a later commit. Ultimately, the statistics are flushed to disk when the
database is disconnected.

In previous versions, the statistics were flushed to disk whenever a cardinality
difference (inserts - deletes) was within log base 2 of the table’s current
cardinality. This threshold increases relatively slowly with respect to the linear
increase in table cardinality. Even for very large tables, a difference in excess of
only 64 rows caused the cardinality data to be updated on disk during the next
commit.

For high update environments, this extra I/O to the RDB$SYSTEM storage
area is often not desired. Options exist to change the RDB$SYSTEM storage
area to read-only or to disable cardinality collection using the CARDINALITY
COLLECTION IS DISABLED clause of the SQL ALTER DATABASE statement.
You can use the RMU Collect Optimizer_Statistics command to update these
statistics at a more convenient time.

In V7.0, Oracle Rdb has revised its update algorithms to reduce the I/O performed
to update cardinalities when cardinality collection is enabled:

• For low cardinality tables (1024 rows), the algorithm remains the same.

• For high cardinality tables, Oracle Rdb does not flush the cardinality update
to disk if it less than 1% of the table cardinality. As the table grows in size,
less I/O is required to maintain the cardinalities. This 1% difference between
actual and recorded cardinality can be tolerated by the optimizer.

• For very high cardinality tables, the cardinality difference cannot exceed the
1% threshold, even after a large number of commits. By default, a table or
index whose cardinality changes have not been flushed in the last 100 commit
statements is flushed to disk.

You can define the logical name RDMS$BIND_CARD_UPDATE_QUOTA
or the configuration parameter RDB_BIND_CARD_UPDATE_QUOTA to a
positive number which represents the number of COMMIT statements to be
executed before cardinalities are flushed to disk.

If the number is low, the update frequency to RDB$RELATIONS,
RDB$INDICES and RDB$INDEX_SEGMENTS is higher. If the number
is large, less I/O is used to keep track of the cardinalities with a trade-off
against the relative accuracy of the stored cardinality.

1–14 Information About This Release

1.8.5 Support for XA Transactions
Digital UNIX Oracle Rdb provides support for transactions that conform to the XA specification

of the X/Open standard.

X/Open is an independent organization that publishes standards for the
information systems industry.

The XA Specification describes facilities by which commercial applications can
achieve distributed transaction processing using the two-phase commit protocol.
The specification describes the interface between a transaction manager and a
resource manager. The specification was last released in 1991.

Figure 1–1 shows the parts of an XA transaction.

Figure 1–1 Parts of an XA transaction

NU−3596A−RA

Transaction
Manager

Application Program

Resource
ManagerResource

ManagerResource
Manager

TX Interface

XA Interface

SQL Interface

The XA Specification does not describe the interface between the application
program and the database resource manager— it varies from one database
vendor to the other. For Oracle Rdb, that interface is SQL.

The interface between the application program and the transaction manager
(sometimes called the TX interface) is not yet standardized and varies from one
transaction manager vendor to another.

Prior to V7.0, Oracle Rdb provided support for distributed transactions only on
OpenVMS using DECdtm software. In V7.0, Oracle Rdb supports the Encina
transaction manager from Transarc. The Oracle Rdb7 Guide to Distributed
Transactions describes distributed transactions and provides some conceptual
information that is pertinent to both DECdtm and Encina transaction managers.

Before using XA transactions, you should become familiar with the XA
specification and with the Encina transaction manager.

1.8.5.1 Using Oracle Rdb with XA Transaction Managers
Beginning with V7.0, Oracle Rdb supports the Encina transaction manager from
Transarc. Using Encina, Oracle Rdb databases on Digital UNIX and OpenVMS
can participate in distributed transactions. You can use Encina with Oracle Rdb
for the following distributed transactions:

• A transaction that attaches to more than one Oracle Rdb database on
Digital UNIX or OpenVMS

• A transaction that attaches more than once to an Oracle Rdb database on
Digital UNIX or OpenVMS

Information About This Release 1–15

• A transaction that attaches to one or more Oracle Rdb for Digital UNIX
databases and one or more Oracle Rdb for OpenVMS databases

Because Encina is not implemented on OpenVMS, your application must run
on Digital UNIX. However, the application can attach to OpenVMS databases
and involve them in the distributed transaction.

Note the following points about using Oracle Rdb with the Encina transaction
manager:

• Only databases that are created in V7.0 or higher, or have been converted to
V7.0 or higher, can participate in XA transactions.

• To start a distributed transaction, you must have the DISTRIBTRAN
database privilege for all databases involved in the transaction.

• Oracle Rdb supports only explicit distributed transactions with Encina.
This means that your application must explicitly call the Encina routines to
start and end the transactions. In addition, it means that you cannot use
interactive SQL.

1.8.5.2 Relationship of Oracle Rdb Components to DECdtm
Prior to V7.0, Oracle Rdb provided support for distributed transactions only on
OpenVMS using DECdtm software.

Figure 1–2 shows how Oracle Rdb communicates with DECdtm, which acts as the
transaction manager.

Figure 1–2 Oracle Rdb with DECdtm

NU−3597A−RA

Application Program

Oracle Rdb EngineOracle Rdb Engine Oracle Rdb Engine

Rdb/Dispatch

Oracle RMU

Oracle Rdb Server

DBR

Oracle Rdb
Database

Oracle Rdb
Database

DECdtm

Rdb/Dispatch

On OpenVMS, the application program communicates with Rdb/Dispatch and
(in the case of explicit distributed transactions) directly with DECdtm. As the
transaction progresses, Rdb/Dispatch communicates with DECdtm both on the
local node and in the remote server process. DECdtm is aware of the location of
each branch of the transaction.

During recovery, the database recovery (DBR) process can call on DECdtm to tell
it whether a transaction branch should be committed or rolled back. The Oracle
RMU utility can call on DECdtm to find the status of a transaction.

DECdtm stores information about the application’s transaction, along with all the
other applications running on the network, in a distributed database.

1–16 Information About This Release

1.8.5.3 Relationship of Oracle Rdb Components to an XA Transaction Manager
The relationship of Oracle Rdb components to an XA transaction manager is
different from those components’ relationship to DECdtm. Figure 1–3 shows how
Oracle Rdb communicates with XA transaction managers.

Figure 1–3 Oracle Rdb with XA

NU−3598A−RA

Transaction
Manager

Application Program

Oracle Rdb Engine

Rdb Server

Oracle Rdb Engine

Rdb Server

Rdb/Dispatch

Oracle Rdb
Database

Oracle Rdb Engine

Rdb/Dispatch

Rdb/Dispatch

Oracle Rdb
Database

Oracle RMU

DBR

The application program communicates with Rdb/Dispatch and with the
transaction manager. The transaction manager has no information on the
location of each branch of the transaction, but only communicates with Oracle
Rdb on the node on which the application is running.

During recovery, the database recovery (DBR) process must wait until the
transaction manager tells it what to do, by way of another Oracle Rdb server
process. The DBR process cannot initiate a conversation with the transaction
manager to find out what is occurring.

The Oracle RMU utility cannot find out anything about transactions beyond what
is stored in the individual databases.

The transaction manager is closely bound to the application program and stores
information only about that application’s transactions. Other applications use
separate instances of the transaction manager.

1.8.5.4 Using SQL with an XA Transaction Manager
To use the XA transaction manager in your applications, use SQL module
language programs or precompiled SQL programs.

Because the XA and SQL interfaces to the Rdb/Dispatch component of Oracle Rdb
evolved independently, their concepts are different. Rdb/Dispatch must match the
concepts coming from the transaction manager (through the XA entry points) and
the application program (through internal calls from SQL). The two main areas of
concern are database references (attaches) and transaction references.

Information About This Release 1–17

Database References
When attaching through SQL, a program presents a database name (and
optional security information). Oracle Rdb returns a database handle for use
in subsequent calls to refer to the database. SQL keeps this handle in its internal
connection context.

At the corresponding XA entry point (xa_open), a transaction manager presents
an open_info string and a resource manager ID (rmid) number. In subsequent
calls, the rmid is used to refer to the database. The name of the database is
derived from the contents of the open_info string.

Each database vendor must specify the format of an open_info string; for Oracle
Rdb, the format is:

Oracle_Rdb_XA+DB=<dbname>+User=<username>+Pwd=<password>

The following shows an example of a valid open_info string:

Oracle_Rdb_XA+DB=personnel+User=jones+Pwd=mypasswd

The open_info string must always begin with the string Oracle_Rdb_XA. The
following describes the arguments of the open_info string:

• +DB=<dbname>

A required argument that identifies the database name, including node name,
optional access information such as user name and password, and the file
specification.

The value must be exactly the same string that is supplied in the SQL
statement that specifies the databases to which the application will attach.
In this way, Rdb/Dispatch can match the database handle used by the
application program with the rmid used by the transaction manager.

The argument name, DB, is case sensitive. The value of the <dbname>
argument is case sensitive for Digital UNIX systems, but not case sensitive
for OpenVMS systems.

• +User=<username>

An optional argument that identifies the user account and is used for user
authentication. The argument name, User, is case sensitive. The value of the
<username> argument is case sensitive for Digital UNIX systems, but not
case sensitive for OpenVMS systems.

• +Pwd=<password>

An optional argument that identifies the user’s password and is used for user
authentication. The argument name, Pwd, is case sensitive. The value of
the <password> argument is case sensitive for Digital UNIX systems, but not
case sensitive for OpenVMS systems.

Oracle Rdb uses the <username> and <password> arguments to attach to the
database during recovery, which is initiated by the transaction manager.

Oracle Rdb requires that the xa_open call occur before the corresponding SQL
statement that attaches to the database.

1–18 Information About This Release

Transaction References
At the SET TRANSACTION entry point, a program presents one or more
database handles (along with other information, such as locking modes). Oracle
Rdb returns a transaction handle. SQL adds this transaction handle to the
information in its connection context.

At the corresponding XA xa_start entry point, a transaction manager presents
one rmid and one transaction identifier (XID). If more than one database is
involved, more xa_start calls are made.

Rdb/Dispatch matches these calls by comparing the database handles supplied
by SQL with the rmids supplied by the XA interface. Clearly, this only works if
the rmid values refer to exactly the same database attachment as the database
handle values, and this only works if the database references were correctly
matched.

Ordering Database and Transaction References
To allow Rdb/Dispatch to match XA references to SQL references, you must
perform certain steps in a specified order:

1. Initialize the transaction manager and use the open_info string to identify
the databases before you explicitly attach to the database using an SQL
CONNECT or ATTACH statement.

Oracle Rdb recommends that you use the CONNECT statement, because it
provides greater control and less overhead than the ATTACH statement.

When you use the CONNECT statement, remember to use the -s ’-conn’
switch on the SQL precompiler command line or the -conn switch on the SQL
module processor command line.

2. Direct the transaction manager to start a transaction before you use an SQL
SET TRANSACTION statement.

Use the SET TRANSACTION statement rather than the DECLARE
TRANSACTION statement to explicitly start the transaction.

Avoid implicit attaches and transactions in SQL. You should attach and start
transactions explicitly.

For more information about the Encina calls, see the Encina documentation.

Using SQL Context Structures
You use a context structure, a host language structure, to pass information
about the distributed transaction. The Oracle Rdb7 Guide to Distributed
Transactions describes the context structure in more detail.

If you are using an XA transaction manager, you declare the context structure as
shown in the following example:

struct {
int version;
int type;
int length;
int value;
int end;
} xacontext = {1,2,4,1,0};

You must associate the context structure with most executable SQL statements.
This is true whether you use the SQL module language or precompiled SQL,
although the method you use to associate the context structure with SQL
statements differs depending on the SQL interface you choose.

Information About This Release 1–19

To use context structures with SQL module language, take the following actions:

• Declare a context structure in the host language program.

• Pass the context structure to most SQL module procedures.

You pass the context structure to those procedures that contain executable
SQL statements (except for those listed in the Oracle Rdb7 Guide to
Distributed Transactions). For example, to pass the context structure from a
C language program to an SQL module procedure called update_pers, use the
following code:

update_pers(&sqlcode, &context_struc)

• Process the SQL source files using the -ctx qualifier on the SQL module
processor command line.

You can use the following arguments to the -ctx qualifier:

all

none

"(proc_name,...)"

To use context structures with precompiled SQL, you must take the following
actions:

• Declare a context structure in the program.

• Add the USING CONTEXT clause to most executable SQL statements that
are involved in the distributed transaction.

For example, to pass the context structure to a statement that opens a cursor,
use the following code:

EXEC SQL USING CONTEXT :context_struc OPEN CURSOR1

See the Oracle Rdb7 Guide to Distributed Transactions for more information
about context structures, including which statements need the context structure.

The Sample Program
A sample program demonstrating how to use Encina with Oracle Rdb is supplied
with the kit in the directory /usr/lib/dbs/sql/v70/examples. The sample program
is in two files, encinasample.sc and encinainit.c. The following excerpt, using the
Encina toolkit, shows the order of initialization:

/*
** Register the databases with the transaction manager.
*/

MakeInfo("personnel", persopeninfo); 1
tstat = tmxa_RegisterRMI(

persopeninfo, "",
&xaordbsw,
TMXA_SERIALIZE_ALL_XA_OPERATIONS,
&persID);

CHK_STAT("tmxa_RegisterRMI for PERSONNEL", tstat);

MakeInfo("mf_personnel", mfopeninfo); 2
tstat = tmxa_RegisterRMI(

mfopeninfo, "",
&xaordbsw,
TMXA_SERIALIZE_ALL_XA_OPERATIONS,
&mfID);

CHK_STAT("tmxa_RegisterRMI for MF_PERSONNEL", tstat);

1–20 Information About This Release

/*
** Initialize the transaction manager.
*/

if (!Init_TM()) exit(1);
/*
** Force the attaches to happen now. The attaches must happen before
** the XA transaction starts.
*/
exec sql connect ’alias PERS, alias MFPERS’; 3

The following points explain the callouts in the preceding example:

1 Register the personnel database with the transaction manager.

2 Register the mf_personnel database with the transaction manager.

3 Attach to the databases using the SQL CONNECT statement. The DECLARE
ALIAS statements (not shown here) map the aliases to the file names.

The following excerpt starts a transaction and performs an update operation:

/*
** Start the XA transaction. This must happen before the SQL transaction
** starts.
*/

status = tx_begin(); 1

if (status != TX_OK)
{
printf ("tx_begin failed, status %d\n", status);
exit(1);
}

/*
** Start the SQL transaction. 2
*/
exec sql using context :xacontext set transaction

on PERS using (READ WRITE RESERVING PERS.EMPLOYEES FOR SHARED WRITE)
and on MFPERS using (READ WRITE RESERVING MFPERS.EMPLOYEES FOR SHARED WRITE);

exec sql using context :xacontext 3
update PERS.EMPLOYEES
set ADDRESS_DATA_1 = :street,

ADDRESS_DATA_2 = :address_data,
CITY = :town,
STATE = :state,
POSTAL_CODE = :postal_code

where EMPLOYEE_ID = :employee_id ;
if (SQLCA.SQLCODE != 0)
{ succeed = FALSE;

handle_error("updating PERS.EMPLOYEES");
} ;

Information About This Release 1–21

/*
** Announce the success or failure of the modify operation, and
** commit or roll back the transaction accordingly.
*/

if (succeed == TRUE) 4
{
printf ("Update operation succeeded\n");
status = tx_commit();
if (status != TX_OK)

{
printf ("tx_commit failed, status = %d\n", status);
}

}
else

{
printf ("Update operation failed\n");
status = tx_rollback();

if (status != TX_OK)
{
printf ("tx_rollback failed, status = %d\n", status);
}

}

The following points explain the callouts in the preceding example:

1 Start the XA transaction, using the Encina tx_begin call.

2 Start the SQL transaction, using the SET TRANSACTION statement. Note
that the statement contains the USING CONTEXT clause.

3 Perform operations in the distributed transaction. Note that the statement
contains the USING CONTEXT clause.

4 Roll back or commit the transaction using the Encina tx_rollback or tx_
commit calls.

Building and Running the Sample Program
Use the following commands to compile and link the sample program for Encina:

setenv sql_sample /usr/lib/dbs/sql/v70/examples
#
sqlpre -l cc="-O0 -g -I/opt/encina/include" -s ’-msgvec -conn’ \
-o encinasample.o $sql_sample/encinasample.sc
#
cc -O0 -g -I/opt/encina/include \
-o encinainit.o -c $sql_sample/encinainit.c
#
cc -g -o encinasample encinasample.o encinainit.o \
-lEncina -lEncServer -ldce \
-L/usr/lib/dbs/shlib -lsql -lrdbshr -lcosi -lots

Before executing the program, you must create a special log file for Encina. Issue
the following commands from a root account:

echo x | dd of=enclogvol seek=8k
chown {yourname} enclogvol
chmod 700 enclogvol

Then, define the following three environment variables to specify the location of
program’s log files:

setenv RDBENCINA_LOG_VOL {path to the file created } /enclogvol
setenv RDBENCINA_LOG_DIR {path to a directory to get log file}
setenv RDBENCINA_RESTART {log directory}/r1:{log directory}/r2

1–22 Information About This Release

Debugging XA Applications
To help debug and trace XA transactions, you can use the configuration parameter
SQL_XA_TRACE in your .dbsrc configuration file. When you set this parameter
equivalent to "TRUE", Oracle Rdb supplies trace information that makes it easier
to debug your applications. (For information about the .dbsrc configuration file,
see the Migrating Oracle Rdb7 Databases and Applications to Digital UNIX.)

1.8.5.5 Recovering from Unresolved Transactions
To recover from unresolved distributed transactions, use the following Oracle
RMU commands:

• RMU Dump Users command with the State=Blocked qualifier

• RMU Resolve command

• RMU Recover Resolve command

• RMU Dump After_Journal command with the State=Prepared qualifier

For more information about these commands, see the Oracle RMU Reference
Manual. For more inforamtion about distributed transactions, see the Oracle
Rdb7 Guide to Distributed Transactions, which describes the concepts of
distributed transactions and explains how to use distributed transactions on
Digital UNIX.

1.8.5.6 Compliance Information
Oracle Rdb V7.0 supports only the Encina transaction manager from Transarc.
Other transaction managers, such as TUXEDO from Novell, use some parts of the
XA specification that Oracle Rdb does not support yet. Therefore, Oracle Rdb can
only claim partial compliance with the XA specification for V7.0.

The XA specification requires that resource managers publish the following
information:

• xa_switch_t structure name: xaordbsw

This structure contains entry points and other information about the resource
manager.

• resource manager name: Oracle_Rdb_XA

This is the Oracle Rdb resource manager name within the xa_switch_t
structure.

• close info string

The close information string used by xa_close is ignored and it may be null.

• open info string

The open information string is required by xa_open. The open string has a
maximum size of 256 characters and it must be in the format described in
Database References in Section 1.8.5.4.

• linking

For an application to use XA transactions, the application must be linked
with the standard shareable library /usr/shlib/librdbshr.so.

• SQL semantics

Information About This Release 1–23

Using the SET TRANSACTION or DECLARE TRANSACTION statement
with the BATCH UPDATE clause returns an error at run time. Because
batch-update transactions do not write to recovery-unit journal files, batch-
update transactions cannot be rolled back. XA requires that a transaction can
be rolled back.

1.8.5.7 Optional Features
XA resource managers also have the option of implementing various XA features.
The following describes which optional features are supported and not supported
by Oracle Rdb:

• Protocol optimizations

Oracle Rdb supports the read-only optimization, which allows Oracle Rdb to
not participate in the two-phase commit protocol when a database is being
accessed as read-only.

• Association migration

Oracle Rdb does not support association migration. Association migration is
a means by which a transaction manager may resume a suspended branch
association in another branch.

• Dynamic registration

Oracle Rdb does not support dynamic registration. Dynamic registration
allows a resource manager to determine when it will participate in a two-
phase commit transaction.

• Asynchrony

Oracle Rdb does not support asynchronous XA calls.

• Heuristics

Oracle Rdb does not support heuristic decision-making. This optional feature
allows a resource manager that has prepared to commit a transaction branch
the ability to commit or roll back its work independently of the transaction
manager.

♦

1.9 New Features in SQL
This section summarizes new and changed features for the SQL interface to
Oracle Rdb. These features include:

• Vertical partitioning

You can now partition a table vertically as well as horizontally. When you
partition a table horizontally, you divide the rows of the table among storage
areas according to data values in one or more columns. Then, a given storage
area contains only those rows whose column values fall within the range that
you specify. When you partition a table vertically, you divide the columns of
the table among storage areas. Then, a given storage area contains only some
of the columns of a table. Consider using vertical partitioning when you know
that access to some of the columns in a table is frequent, but that the access
to other columns is occasional.

For more information, see the Oracle Rdb7 Guide to Database Design and
Definition and the Oracle Rdb7 SQL Reference Manual.

• Strict partitioning

1–24 Information About This Release

You can now specify whether a partitioning key for a storage map is updatable
or not updatable. If you specify that the key is not updatable, Oracle Rdb
retrieval performance improves because Oracle Rdb can use the partitioning
criteria when optimizing the query.

For more information, see the Oracle Rdb7 Guide to Database Design and
Definition and the Oracle Rdb7 SQL Reference Manual.

• Creating a default storage area

You can separate user data from the system data, such as the system tables,
by using the DEFAULT STORAGE AREA clause of the CREATE DATABASE
or IMPORT statements. This clause specifies that all user data and indexes
that are not mapped explicitly to a storage area be stored in the default
storage area. For more information, see the Oracle Rdb7 Guide to Database
Design and Definition and the Oracle Rdb7 SQL Reference Manual.

• Dropping a storage area with a cascading delete

You can specify that Oracle Rdb drop a storage area with a cascading delete.
When you do, Oracle Rdb drops database objects referring to the storage area.
For more information, see the Oracle Rdb7 Guide to Database Design and
Definition and the Oracle Rdb7 SQL Reference Manual.

• Altering the RDB$SYSTEM storage area

You can now alter the RDB$SYSTEM storage area using the ALTER
STORAGE AREA clause of the ALTER DATABASE statement. You can use
the ALTER STORAGE AREA clause to alter the following characteristics:

ALLOCATION IS number-pages PAGES
extent-params
CACHE USING cache-name
NO ROW CACHE
SNAPSHOT ALLOCATION IS snp-pages PAGES
SHAPSHOT EXTENT
CHECKSUM CALCULATION
SNAPSHOT CHECKSUM CALCULATION

For more information, see the Oracle Rdb7 Guide to Database Design and
Definition and the Oracle Rdb7 SQL Reference Manual.

• Importing and exporting a view based on a system table

You can now import and export databases that contain views based on system
tables. In previous versions, attempting to export a database with views
based on system tables resulted in the error SQL-F-FLDNOTBCK.

• Moving optional system tables

You can move optional system tables from the RDB$SYSTEM storage area
or the default storage area to other storage areas by using the CREATE
STORAGE MAP statement and then the ALTER STORAGE MAP statement.

You can move the following system tables:

RDB$CATALOG_SCHEMA (Optional table for multischema databases)
RDB$CHANGES (Optional table for the Replication Option for Rdb)
RDB$CHANGES_MAX_TSER (Optional table for the Replication Option
for Rdb)
RDB$SYNONYMS (Optional table for multischema databases)
RDB$TRANSFERS (Optional table for the Replication Option for Rdb)

Information About This Release 1–25

RDB$TRANSFER_RELATIONS (Optional table for the Replication Option
for Rdb)
RDB$WORKLOAD (Optional table for workload collection)

See the Oracle Rdb7 Guide to Database Design and Definition for a
description of how to move these areas and the restrictions involved.

• Creating storage maps for tables with data

In previous versions, you could not create a storage map for tables that
contained data. Now, if the table is located in either the RDB$SYSTEM
storage area or the default storage area and has no storage map, you can
create a storage map for the table. For more information, see Section 3.2.25
and the Oracle Rdb7 Guide to Database Design and Definition.

• Creating outlines for stored functions

The ON FUNCTION clause of the CREATE OUTLINE statement lets you
create an outline directly on a stored function. In addition, you can specify
the USING clause with the ON PROCEDURE and ON FUNCTION clauses.
For more information, see the Oracle Rdb7 SQL Reference Manual.

• New FROM clause for CREATE OUTLINE

The process for creating outlines has been simplified with new syntax. You
can now specify the SELECT statement within the FROM clause of the
CREATE OUTLINE statement for which you need an outline. For more
information, see the Oracle Rdb7 SQL Reference Manual.

• Freezing data definitions

You can ensure that the data definitions of your database do not change by
using the METADATA CHANGES ARE DISABLED clause of the ALTER
DATABASE, CREATE DATABASE, or IMPORT statements. For more
information, see the Oracle Rdb7 Guide to Database Design and Definition
and the Oracle Rdb7 SQL Reference Manual.

• Modifying the database buffer size

You can now modify the database buffer size by using the BUFFER SIZE
clause in the ALTER DATABASE statement. In previous versions, you could
specify the clause only in the CREATE DATABASE statement. For more
information, see the Oracle Rdb7 Guide to Database Design and Definition
and the Oracle Rdb7 SQL Reference Manual.

• Specifying how a database opens when you create the database

You can specify whether a database opens automatically or manually when
you create the database. In previous versions, you could specify the OPEN
IS clause only in the ALTER DATABASE statement. For more information,
see the Oracle Rdb7 Guide to Database Design and Definition and the Oracle
Rdb7 SQL Reference Manual.

• Specifying how long to wait before closing a database

You can specify how long Oracle Rdb waits before closing the database, by
using the WAIT n MINUTES FOR CLOSE clause. For more information, see
the Oracle Rdb7 SQL Reference Manual.

• Extending the allocation of storage areas

1–26 Information About This Release

You can now manually force a storage area to extend by using the
ALLOCATION IS clause of the ALTER STORAGE AREA clause. For more
information, see the Oracle Rdb7 Guide to Database Design and Definition
and the Oracle Rdb7 SQL Reference Manual.

• Quickly deleting data in tables

If you want to quickly delete the data in a table, but you want to maintain
the metadata definition of the table (perhaps to reload the data into a
new partitioning scheme), you can use the TRUNCATE TABLE statement.
For more information, see the Oracle Rdb7 Guide to Database Design and
Definition and the Oracle Rdb7 SQL Reference Manual.

• Creating temporary tables

You can create temporary tables to store temporary results only for a short
duration, perhaps to temporarily store the results of a query so that your
application can act on the results of that query. The data in a temporary
table is deleted at the end of an SQL session. For more information, see the
Oracle Rdb7 Guide to Database Design and Definition and the Oracle Rdb7
SQL Reference Manual.

• New logical name and configuration parameter for use with temporary tables

The logical name RDMS$TTB_HASH_SIZE or configuration parameter
RDB_TTB_HASH_SIZE sets the size of the hash table used for temporary
tables. If the logical name or configuration parameter is not defined, Oracle
Rdb uses a default value of 1249.

If you expect that that temporary tables will be large (that is, 10K or more
rows), use this logical name or configuration parameter to adjust the hash
table size to avoid long hash chains. Set the value to approximately 1/4
of the expected maximum number of rows for each temporary table. For
example, if a temporary table will be populated with 100,000 rows, define
this logical name or configuration parameter to be 25000. If there are
memory constraints on your system, you should define the logical name or
configuration parameter to be no higher than this value (1/4 of the expected
maximum number of rows).

• Removing the links to the repository

You can remove the link between the repository and database but still
maintain the data definitions in both places, using the DICTIONARY IS NOT
USED clause of the ALTER DATABASE statement.

For more information, see the Oracle Rdb7 Guide to Database Design and
Definition and the Oracle Rdb7 SQL Reference Manual.

• Specifying the location of the recovery journal

You can specify the location of the recovery journal using the RECOVERY
JOURNAL (LOCATION IS ’directory-spec’) clause with the ALTER
DATABASE, CREATE DATABASE, and IMPORT statements.

For more information, see the Oracle Rdb7 SQL Reference Manual.

• Specifying an edit string in an .aij backup file name

You can specify whether the backup file name includes an edit string with the
EDIT STRING clause of the ALTER DATABASE statement.

For more information, see the Oracle Rdb7 SQL Reference Manual.

• Increasing the fanout factor for adjustable lock granularity

Information About This Release 1–27

Adjustable lock granularity for previous versions of Oracle Rdb defaulted to
a count of 3. This means that the lock fanout factor was (10, 100, 1000). As
databases grow larger, it is necessary to allow these fanout factors to grow
to reduce lock requirements for long queries. You can now change the fanout
factor by specifying the COUNT IS clause with the ADJUSTABLE LOCK
GRANULARITY IS ENABLED clause.

For more information, see the Oracle Rdb7 Guide to Database Design and
Definition and the Oracle Rdb7 SQL Reference Manual.

• Specifying detected asynchronous prefetch with a threshold value

Detected asynchronous prefetch can significantly improve performance by
using heuristics to determine if an I/O pattern is sequential even if the
operation is not actually performing sequential I/O. For example, when
fetching a LIST OF BYTE VARYING column, the heuristics detect that the
pages being fetched are sequential and fetch ahead asynchronously to avoid
wait times when the page is really needed.

For more information, see the Oracle Rdb7 SQL Reference Manual.

• Setting debug flags using SQL

SQL supports a new SET FLAGS statement in interactive and dynamic
SQL and a SHOW FLAGS statement in interactive SQL. The SET FLAGS
statement lets you enable and disable the database systems debug flags
during execution. For more information, see the Oracle Rdb7 SQL Reference
Manual and the Oracle Rdb7 Guide to SQL Programming.

• Holding cursors open across transactions

SQL cursors can now remain open across transaction boundaries. The WITH
HOLD clause of the DECLARE CURSOR statement indicates that the cursor
remains open after the transaction ends. A holdable cursor that has been
held open retains its position when a new SQL transaction is begun.

You can also specify the attributes of the holdable cursor as a database
default using the SET HOLD CURSORS statement.

For more information, see the Oracle Rdb7 SQL Reference Manual and the
Oracle Rdb7 Guide to SQL Programming.

• External routine enhancements

SQL now provides external procedures and allows external routines to
contain SQL statements to bind to new schema instances and perform
database operations. External routines are external functions or external
procedures that are written in a 3GL language such as C or Fortran, linked
into a shareable image, and registered in a database schema.

External routine activation, execution, and exception handling is controlled
by a new executor manager process. External routines are available on all
platforms.

For more information, see the Oracle Rdb7 Guide to SQL Programming and
the Oracle Rdb7 SQL Reference Manual.

• Creating stored functions

In addition to defining stored procedures, you can now define stored functions
using the CREATE MODULE statement. A stored function is a set of
operations performed on an Oracle Rdb database by one or more SQL
statements. It accepts a set of input parameters and returns a single

1–28 Information About This Release

result. You invoke a stored function by using the function name in a value
expression.

See the Oracle Rdb7 SQL Reference Manual and the Oracle Rdb7 Guide to
SQL Programming for more information regarding stored functions.

• Returning the value of a stored function

SQL provides the RETURN statement, which returns the result of a stored
function. See the Oracle Rdb7 SQL Reference Manual and the Oracle Rdb7
Guide to SQL Programming for more information.

• Cascading delete for modules

The DROP MODULE CASCADE statement lets you drop a module
and invalidates any objects that refer to it. See the Oracle Rdb7 SQL
Reference Manual and the Oracle Rdb7 Guide to SQL Programming for more
information.

• Dropping functions and procedures

You can now drop external procedures and stored functions and procedures.
See the Oracle Rdb7 SQL Reference Manual and the Oracle Rdb7 Guide to
SQL Programming for more information.

• Using the CALL statement in a compound statement

You can now use the CALL statement within a compound statement, thus in
a stored procedure or function, to call another stored procedure. You can also
use the CALL statement to invoke external procedures.

For more information, see the Oracle Rdb7 Guide to SQL Programming and
the Oracle Rdb7 SQL Reference Manual.

• New SIGNAL statement

SQL now provides a new SIGNAL statement for use within a compound
statement. The SIGNAL statement accepts a single character value
expression, which is used as the SQLSTATE. When Oracle Rdb encounters
a SIGNAL statement, the current routine and all calling routines are
terminated and the signaled SQLSTATE is returned to the application.

For more information, see the Oracle Rdb7 SQL Reference Manual and the
Oracle Rdb7 Guide to SQL Programming.

• Specifying the DEFAULT clause, CONSTANT clause, and UPDATABLE
clause when declaring variables within compound statements

You can use the DEFAULT clause to specify the default value of a variable
to be any value expression including subqueries, conditional, character, date
/time, and numeric expressions. Additionally, the variable can now inherit
the default from the named domain.

The CONSTANT clause changes the variable into a declared constant, which
cannot be updated. The UPDATABLE clause allows a variable to be updated.

For more information, see the Oracle Rdb7 SQL Reference Manual and the
Oracle Rdb7 Guide to SQL Programming.

• Obtaining the connection name and calling routine name using the GET
DIAGNOSTICS statement

You can now obtain the current connection name in a variable or parameter
from within a compound statement using the GET DIAGNOSTICS statement.

You can also obtain the calling routine name using the GET DIAGNOSTICS
statement.

Information About This Release 1–29

For more information, see the Oracle Rdb7 SQL Reference Manual and the
Oracle Rdb7 Guide to SQL Programming.

• EXTERNAL keyword for INCLUDE SQLCA statement

You can now declare an external reference to the SQLCA structure when
you use the SQL precompiler with the C language by using the optional
EXTERNAL keyword in the INCLUDE SQLCA statement.

For more information, see the Oracle Rdb7 Guide to SQL Programming and
the Oracle Rdb7 SQL Reference Manual.

• Two new basic predicates for inequality comparisons

The inequality predicates are ^= and !=.

The != predicate is available only if you set your dialect to ORACLE LEVEL1.
See the Oracle Rdb7 SQL Reference Manual for more information on basic
predicates.

• Changes to CURRENT_USER function

In V7.0, before any invoker’s rights routines are called, the CURRENT_USER
function is established as identical to the SESSION_USER function. As each
routine is called, it either inherits the value of the authorization from the
caller or, in the case of a definer’s rights routine, derives it from the module
AUTHORIZATION clause. Therefore, the CURRENT_USER function returns
the authorization of the last definer’s rights routine in the call chain.

For more information on CURRENT_USER, see the Oracle Rdb7 SQL
Reference Manual.

• Specifying the new dialect ORACLE LEVEL1

You can now specify the ORACLE LEVEL1 dialect for the interactive SQL
and dynamic SQL environments. This dialect is similar to the SQL92 dialect.
For more information, see the Oracle Rdb7 SQL Reference Manual.

OpenVMS
VAX

OpenVMS
Alpha

• Specifying C_PROTOTYPES=file-name qualifier for SQL module language

The SQL module language C_PROTOTYPES qualifier now accepts a file
name. See the Oracle Rdb7 SQL Reference Manual for more information. ♦

Digital UNIX • Editing in interactive SQL

On Digital UNIX, you can use the EDIT statement within interactive SQL.
It works similarly to the SQL EDIT statement on OpenVMS. For more
information, see the Migrating Oracle Rdb7 Databases and Applications to
Digital UNIX and the Oracle Rdb7 SQL Reference Manual. ♦

Digital UNIX • Support for Pascal and FORTRAN on Oracle Rdb for Digital UNIX

Oracle Rdb for Digital UNIX now supports the DEC FORTRAN and DEC
Pascal languages for the SQL precompiler and the SQL module processor. ♦

Digital UNIX • New command line qualifier for precompiled SQL

The –extend_source command line qualifier allows the SQL precompiler to
view 132 columns of FORTRAN source rather than the default of 72 columns.

See the Oracle Rdb7 SQL Reference Manual and the Oracle Rdb7 Guide to
Database Design and Definition for more information. ♦

• New Pascal data types

SQL now supports the following built-in Pascal data types:

INTEGER8

1–30 Information About This Release

INTEGER16

INTEGER32

INTEGER64

• The Shift_JIS character set

Oracle Rdb includes support for the Shift_JIS character set, a mixed
multi-octet character set.

For more information, see the Oracle Rdb7 SQL Reference Manual.

• Setting transaction modes

You can enable or disable transaction modes on the CREATE DATABASE or
ALTER DATABASE statements, giving you more control over the database
environment.

For more information, see the Oracle Rdb7 SQL Reference Manual.

• Enhancements for the SQL SHOW statement

The SQL SHOW statement displays the new features affecting data definition,
stored routines, and external routines.

For more information, see the Oracle Rdb7 SQL Reference Manual.

• The keyword ROWID

You can use the keyword ROWID as a synonym for the keyword DBKEY. For
more information, see the Oracle Rdb7 SQL Reference Manual.

• COUNT function enhancements

You can now specify:

• COUNT (*)

• COUNT (value-expr)

• COUNT (DISTINCT value-expr)

For more information, see the Oracle Rdb7 SQL Reference Manual.

• Oracle7 SQL functions

New SQL functions are added to the Oracle Rdb SQL interface for
compatibility with Oracle7 SQL. Complete descriptions of these functions can
be found in the Oracle7 Server SQL Language Reference Manual.

The following new functions are built in to the SQL interface of Oracle Rdb
V7.0:

– CONCAT—Concatenates two strings. CONCAT is functionally equivalent
to the concatenation operator (| |).

– CONVERT—Converts a character string to the specified character set.

– DECODE—Compares an expression to a search value until a match is
found.

– SYSDATE—Returns the current date and time. SYSDATE is a synonym
for CURRENT_TIMESTAMP.

In addition to the listed built-in functions, you can install many other
functions that emulate Oracle7 functions by using a script in interactive SQL.
For more information on these optional functions and on the listed built-in
functions, see the Oracle Rdb7 SQL Reference Manual.

Information About This Release 1–31

• SQL header file for use with C programs

You can now use the sql_sqlda.h header file in C language programs to obtain
definitions of the SQLDA and SQLDA2 structures. Previously, you could only
obtain definitions of these structures by using the SQL precompiler statement
INCLUDE SQLDA or INCLUDE SQLDA2. You can now use the sql_sqlda.h
header file in an include directive in a C language source module.

For more information, see the Oracle Rdb7 Guide to SQL Programming.

• SQL header file to eliminate DEC C informational messages

SQL provides a header file, sql_rdb_headers.h to eliminate informational
messages by providing prototypes for explicitly called SQL routines. For more
information, see the Oracle Rdb7 Guide to SQL Programming.

1.10 New Features in Oracle RMU
This section summarizes new and changed features for the Oracle RMU interface
to Oracle Rdb. These features include:

• Hot Standby database option

For information, see Section 1.6.

• Temporary work files for AIJ rollforward operations can be directed to a new
location

You can redirect the temporary work files for AIJ rollforward operations and
the database recovery (DBR) redo operations to a different disk and directory
location than the default. Do this by assigning a different directory to the new
RDM$BIND_AIJ_WORK_FILE and RDM$BIND_DBR_WORK_FILE logical
names on OpenVMS systems or the RDM_BIND_AIJ_WORK_FILE and
RDM_BIND_DBR_WORK_FILE configuration parameters on Digital UNIX
systems. This can be helpful in alleviating I/O bottlenecks in the default
location.

See the sections on the RMU Recover and RMU Optimize After_Journal
commands in the Oracle RMU Reference Manual for details.

• Tape loader or stacker alert

By default, if a tape device has a loader or stacker, Oracle RMU should
recognize this fact. However, occasionally Oracle RMU does not recognize
that a tape device has a loader or stacker. Therefore, when the first tape fills
or has been read (depending on the operation), Oracle RMU issues a request
to the operator for the next tape, instead of requesting the next tape from
the loader or stacker. Similarly, sometimes Oracle RMU behaves as though a
tape device has a loader or stacker when actually it does not.

The new Media_Loader and Nomedia_Loader qualifiers allow you to alert
Oracle RMU to the presence or absence of a tape loader or stacker. These
qualifiers are valid with the RMU Backup, RMU Backup After_Journal, RMU
Dump After_Journal, RMU Dump Backup, RMU Optimizer After_Journal,
RMU Recover, RMU Recover Resolve, RMU Restore, and RMU Restore
Only_Root commands.

See the Oracle RMU Reference Manual for details.

• RdbAlter Area . . . Page command enhancement

1–32 Information About This Release

The RdbAlter Area . . . Page command now allows you to specify a snapshot
area as the area-name parameter. This, in turn, allows you to use the
RdbAlter Display command and RdbAlter Deposit command with snapshot
files.

See the Oracle RMU Reference Manual for details.

• RMU Analyze Cardinality command replacement

The RMU Analyze Cardinality command has been replaced with the new
RMU Collect Optimizer_Statistics command. The new command offers
improved functionality over the RMU Analyze Cardinality Command. The
RMU Analyze Cardinality command is now deprecated.

See the description of the new command within this list and in the Oracle
RMU Reference Manual for details.

• RMU Analyze Index and RMU Analyze Placement command enhancements

The following enhancements have been made to the RMU Analyze Index and
Analyze Placement commands:

These commands display statistics on the new sorted ranked indexes
created with SQL.

A new qualifier, Transaction_Type, is now supported by these commands.
This new qualifier allows you to specify the type of transaction mode
Oracle RMU should use when performing the analyze operation, or allows
you to specify that Oracle RMU should determine the transaction type
based on whether or not snapshot areas have been disabled.

See the Oracle RMU Reference Manual for details.

• RMU Backup command enhancements

OpenVMS
VAX

OpenVMS
Alpha

Support for multiprocess backup operations to tape

You can now specify a multiprocess RMU Backup command, referred to
as a parallel backup for backup operations to tape. This new feature
uses multiple, multithreaded processes to perform a database backup. A
parallel backup operation significantly improves the performance of large
database backup operations on SMP systems and VMSclusters. The new
Oracle RMU qualifiers to support parallel backup are the Execute and
Parallel qualifiers.

Support for generating a parallel backup plan file

Oracle RMU can generate a plan file for your parallel backup operation
that contains information about the parallel backup operation and work
instructions for the multiple processes. When you specify the plan file
as a parameter to the new RMU Backup Plan command, Oracle RMU
executes the backup operation per the specifications included in the plan
file. ♦
The new RMU Backup qualifier to support backup plan generation is the
List_Plan qualifier.

Support for generating an options file that can be used with the RMU
Restore command

A new qualifier, Restore_Options, has been added to the RMU Backup
command. This qualifier directs Oracle RMU to generate an options file
that you can specify as the parameter to the Options qualifier of the RMU
Restore command.

Information About This Release 1–33

Support for accepting tape labels

The RMU Backup command now allows you to specify a qualifier that
directs Oracle RMU to keep the label it finds on a tape during a backup
operation even if that label does not match the default label or that
specified with the Label qualifier. The new qualifier is the Accept_Label
qualifier.

See the Oracle Rdb7 Guide to Database Maintenance and the Oracle RMU
Reference Manual for details.

• RMU Backup After_Journal command enhancements

The following new features have been added to the RMU Backup After_
Journal command:

The RMU Backup After_Journal command now allows you to specify the
maximum time the .aij backup file operation waits for the quiet-point
lock during online backup operations. The new qualifier to support this
feature is the Lock_Timeout qualifier.

A Sequence option to Edit_Filename qualifier has been added. This option
is synonymous to the Vno option. Either option can be used and has the
same effect. The synonym has been added to more accurately reflect the
semantics of the option. Both the Vno and Sequence options specify that
the .aij sequence number is to be used in the .aij backup file edit string.

OpenVMS
VAX

OpenVMS
Alpha

Two new global process symbols, RDM$AIJ_ENDOFFILE and RDM$AIJ_
FULLNESS, are set when the RMU Backup After_Journal command
completes. RDM$AIJ_ENDOFFILE contains the end of file block number
for the current .aij file. RDM$AIJ_FULLNESS contains the percent
fullness of the current .aij file. ♦

The RMU Backup After_Journal command now allows you to specify a
qualifier that directs Oracle RMU to keep the label it finds on a tape
during an .aij backup operation even if that label does not match the
default label or that specified with the Label qualifier. The new qualifier
is the Accept_Label qualifier.

See the Oracle Rdb7 Guide to Database Maintenance and the Oracle RMU
Reference Manual for details.

OpenVMS
VAX

OpenVMS
Alpha

• New RMU Backup Plan command

This command allows you to execute a plan file generated with the new
List_Plan qualifier of the RMU Backup command.

See the Oracle Rdb7 Guide to Database Maintenance and the Oracle RMU
Reference Manual for details. ♦

• RMU Checkpoint command enhancement

The RMU Checkpoint command now supports the Wait and Nowait qualifiers.
These qualifiers allow you to specify whether or not the system prompt is to
be returned before the checkpoint operation completes.

See the Oracle RMU Reference Manual for details.

• New RMU Collect Optimizer_Statistics, Delete Optimizer_Statistics, Insert
Optimizer_Statistics, and Show Optimizer_Statistics commands

1–34 Information About This Release

These new commands allow you to maintain and manage three types of
statistics for the optimizer. The three types of statistics are cardinality,
workload, and storage. The cardinality statistics include table cardinality,
index cardinality, and index prefix cardinality. The workload statistics are
duplicity factor and null factor, which are based on interesting column groups
derived from a query workload. The storage statistics are row clustering
factor, index depth (sorted index only), key clustering factor, and data
clustering factor.

The optimizer uses these statistics to improve the estimated cost and
cardinality of various solutions tried during query optimization. This
increases the probability that the optimizer will generate an optimal query
solution.

The workload statistics can be collected only after workload information has
been gathered and stored into a system table by the optimizer. You enable the
collection of workload information by the optimizer using the WORKLOAD
COLLECTION IS ENABLED clause of the SQL CREATE DATABASE or SQL
ALTER DATABASE statement.

The RMU Collect Optimizer_Statistics command allows you to specify
whether statistics are collected for all or specified tables and indexes. The
RMU Show Optimizer_Statistics command displays the existing statistics for
specified tables or indexes. The RMU Delete Optimizer_Statistics command
removes entries from statistics collection. The RMU Insert Optimizer_
Statistics command replaces workload statistics that you deleted previously.

See the Oracle RMU Reference Manual, the Oracle Rdb7 SQL Reference
Manual, and the Oracle Rdb7 Guide to Database Performance and Tuning for
details.

• RMU Convert command enhancements

The following changes have been made to the RMU Convert command:

The RMU Convert command no longer supports conversion of pre-V5.1
databases. If you have a database whose structure is pre-V5.1, first
convert it to V5.1, V6.0, or V6.1, and then convert the database to V7.0.
See the Oracle Rdb7 Installation and Configuration Guide for details.

When a database from an earlier version is converted to V7.0 or
higher, the RMU Convert command collects and stores the index prefix
cardinalities for each multisegmented sorted index in the database.

Because the collection of index prefix cardinality information upon
conversion of a large database can take a considerable amount of time,
the RMU Convert command issues a new prompt that gives you the
option of either computing or estimating the index prefix cardinalities.
For more information, see Section 1.10.1.

See the Oracle RMU Reference Manual for details.

• RMU Copy command enhancement

A new qualifier, Transaction_Mode, sets the allowable transaction modes for
the database root file created by this command. For more information, see
Section 4.4.1.

• RMU Dump command enhancements

The following enhancements have been made to the RMU Dump command:

Restore_Options qualifier

Information About This Release 1–35

A new qualifier, Restore_Options, directs Oracle RMU to generate an
options file that can be specified as the parameter to the Options qualifier
of the RMU Restore command.

Header qualifier

The Header qualifier has been enhanced such that you can now provide
an options list. The options list allows you to limit the output from the
Dump command to specific areas of interest.

See the Oracle RMU Reference Manual for details.

• RMU Dump After_Journal command enhancement

A new qualifier, Option=[No]Statistics, allows you to specify that Oracle RMU
display statistics on how frequently database pages are referenced by the
data records in the .aij file. In addition, if the database root file is available,
Oracle RMU displays a recommended value for the RMU Recover command’s
Aij_Buffers=n qualifier.

See the Oracle RMU Reference Manual for details.

• RMU Dump Backup command enhancements

A new qualifier, Restore_Options, directs Oracle RMU to generate an
options file that can be specified as the parameter to the Options qualifier
of the RMU Restore command.

Now when you specify the Root, Full, or Debug option, Oracle RMU
includes database backup header information in the dump. This header
information provides the backup file name and the backup file database
version. The backup file database version is the version of Oracle Rdb
that was executing at the time the backup file was created.

See the Oracle RMU Reference Manual for details.

• RMU Extract command enhancements

The following enhancements have been made to the RMU Extract command:

New Items=Procedures option

A new option, Procedures, is supported for use with the Items qualifier.
This new option allows you to direct Oracle RMU to extract external
procedures.

New Items=Import option

A new parameter, Import, is supported for use with the Items qualifier.
This new parameter allows you to direct Oracle RMU to generate an SQL
or RDO IMPORT script.

New default behavior for the Options=Dictionary_References qualifier.

If the Options=Dictionary_References qualifier or the
Options=Nodictionary_References qualifier is not specified, Oracle
RMU examines the RDB$RELATIONS and RDB$FIELDS system
tables to determine whether or not any domains or tables refer to the
repository (data dictionary). If references are made to the repository, the
Options=Dictionary_References qualifier is the default. Otherwise, Oracle
RMU assumes that the repository is not used, and the default is the
Options=Nodictionary_References qualifier.

See the Oracle RMU Reference Manual for details.

• RMU Load command enhancements

1–36 Information About This Release

The RMU Load command now supports the following:

Parallel load operations

A new qualifier, Parallel, allows you to specify a multiprocess RMU Load
command (referred to as a parallel load). A parallel load operation can be
used to increase the speed of a large load operation.

Setting when and if constraints are evaluated

Three new qualifiers, Constraints, Constraints=Deferred, and
Noconstraints, allow you to determine when or if constraints are
evaluated during a load operation.

Support for deferring index updates

A new qualifier, Defer_Index_Updates, allows you to specify that non-
unique indexes other than those that define the placement information for
data in a storage area will not be rebuilt until commit time.

Generating a load plan file

A new qualifier, List_Plan, allows you to generate a file containing all the
information needed by Oracle RMU to execute a load procedure. This file
is called a load plan file. You can determine whether the load plan file is
executed by issuing the new Execute or Noexecute qualifier. If you specify
the Noexecute qualifier on the RMU Load command, you can process the
plan file later by issuing the new RMU Load Plan command.

Specifying the number of rows sent between processes in a single I/O
request

A new qualifier, Row_Count, allows you to specify the number of rows
that are sent between processes in a single I/O request during a load
operation. This qualifier is designed primarily for use with Oracle Rdb for
Digital UNIX databases.

OpenVMS
VAX

OpenVMS
Alpha

Loading security audit records in a different database than the one being
audited.

A new parameter, Database_File=db-name, has been added to the Audit
qualifier. This parameter allows you to load the security audit records for
one database into another database. ♦

Loading .unl files created under another version of Oracle Rdb

You can now unload a table from a database structured under one version
of Oracle Rdb and load it into the same table of a database structured
under another version of Oracle Rdb. For example, if you unload the
EMPLOYEES table from a mf_personnel database created under Oracle
Rdb V6.0, you can load the generated .unl file into an Oracle Rdb V7.0
database. Likewise, if you unload the EMPLOYEES table from a mf_
personnel database created under Oracle Rdb V7.0, you can load the
generated .unl file into an Oracle Rdb V6.1 database. This is true even for
specially formatted binary files (created with the RMU Unload command
without the Record_Definition qualifier). The earliest version into which
you can load a .unl file from another version is Oracle Rdb V6.0.

See the Oracle RMU Reference Manual for details.

Storing null values

A new option, Null, has been added to the Record_Definition qualifier.
This qualifier allows you to store null values.

Information About This Release 1–37

See the Oracle RMU Reference Manual and the Oracle Rdb7 Guide to
Database Design and Definition for details on all these new qualifiers,
parameters, and options.

• New RMU Load Plan command

The RMU Load Plan command allows you to execute a load plan file created
with the new List_Plan qualifier of the RMU Load command.

See the Oracle RMU Reference Manual and the Oracle Rdb7 Guide to
Database Design and Definition for details.

• RMU Move_Area command enhancement

A new qualifier, Transaction_Mode, sets the allowable transaction modes for
the database root file created by this command. For more information, see
Section 4.4.1.

• RMU Optimize After_Journal command enhancement

The RMU Optimize After_Journal command now allows you to specify a
qualifier that directs Oracle RMU to keep the label it finds on a tape during
an .aij optimization operation even if that label does not match the default
label or that specified with the Label qualifier. The new qualifier is the
Accept_Labels qualifier.

See the Oracle RMU Reference Manual for details.

• RMU Recover command enhancement

The RMU Recover command now provides the Automatic and Noautomatic
qualifiers. These qualifiers allow you to specify whether or not Oracle RMU
should attempt automatic recovery of all .aij files.

See the Oracle RMU Reference Manual for details.

• RMU Repair command enhancement

The RMU Repair command now provides the Checksum qualifier. This
qualifier allows you to check and update the checksums for all or specified
areas in the database.

See the Oracle RMU Reference Manual for details.

• RMU Restore command changes

Just_Page qualifier replaced

The Just_Page qualifier is no longer valid for the RMU Restore and
Recover commands. The Just_Page qualifier is replaced by the Just_
Corrupt qualifier. See Section 1.10.2 for more information.

Transaction_Mode qualifier

A new qualifier, Transaction_Mode, sets the allowable transaction modes
for the database root file created by this command. For more information,
see Section 4.4.1.

RMU Restore Only_Root command enhancement

A new qualifier, Transaction_Mode, sets the allowable transaction modes
for the database root file created by this command. For more information,
see Section 4.4.1.

• RMU Server After_Journal Start command enhancement

1–38 Information About This Release

The RMU Server After_Journal Start command now provides the Output
qualifier. This qualifier allows you to provide a file specification for the
AIJ log server (ALS) output file. Use the new RMU Server After_Journal
Reopen_Output command to view this log file.

See the Oracle RMU Reference Manual for details.

• New RMU Server After_Journal Reopen_Output command

This command allows you to view the current output file for the ALS.

See the Oracle RMU Reference Manual for details.

• New RMU Server Backup_Journal Resume command

This command reinstates after-image journal backup operations that were
suspended with the RMU Server Backup_Journal Suspend command.

See the Oracle RMU Reference Manual for details.

• New RMU Server Backup_Journal Suspend command

This command allows you to temporarily suspend .aij backup operations on
all database nodes. While operations are suspended, you cannot back up .aij
files manually (with the RMU Backup After_Journal command) nor will the
AIJ backup server (ABS) perform .aij backup operations.

See the Oracle RMU Reference Manual for details.

• RMU Set After_Journal command enhancement

The RMU Set After_Journal command now provides an Edit_Filename
keyword option to the Add qualifier. This keyword allows you to specify
a default edit string for the backup of a specific .aij file. Use the Backups
qualifier with the Edit_Filename keyword to specify a default edit string for
all .aij backup files.

See the Oracle RMU Reference Manual for details.

• RMU Set Corrupt_Pages command enhancement

The RMU Set Corrupt_Pages command now allows you to specify snapshot
areas with the Areas qualifier and pages in the snapshot area with the Page
qualifier.

See the Oracle RMU Reference Manual for details.

• RMU Show After_Journal command enhancements

The following new features are provided by the RMU Show After_Journal
command:

The new Edit_Filename option that you can specify with the RMU Set
After_Journal command is displayed by the RMU Show After_Journal
command.

The full file specification of an added .aij file is displayed as a comment
field. Previously, if the user did not enter a full file specification when he
or she created the .aij file, a full file specification was not displayed when
the user issued the RMU Show After_Journal command.

Information About This Release 1–39

OpenVMS
VAX

OpenVMS
Alpha

Two new global process symbols, RDM$AIJ_ENDOFFILE and RDM$AIJ_
FULLNESS, are defined when you specify the Backup_Context qualifier
with the RMU Show After_Journal command. RDM$AIJ_ENDOFFILE
contains the end of file block number for the current .aij file. RDM$AIJ_
FULLNESS contains the percent fullness of the current .aij file. ♦

See the Oracle RMU Reference Manual for details.

• RMU Show Statistics command enhancements

Several new qualifiers have been added to the RMU Show Statistics
command. For more information, see Section 1.11.

• RMU Show System and Show Users command enhancement

The RMU Show Users and Show System commands have been enhanced
to display the number of available monitor message buffers, the date and
time of the monitor start, and whether after-image backup operations have
been temporarily suspended (with the RMU Server Backup_Journal Suspend
command).

See the Oracle RMU Reference Manual for details.

• RMU Unload command enhancement

A new option, Null, has been added to the Record_Definition qualifier. This
option allows you to unload Null values as a string that you specify to identify
the Null value.

See the Oracle RMU Reference Manual and the Oracle Rdb7 Guide to
Database Design and Definition for details.

• RMU Verify command enhancements

The following enhancements have been made to the RMU Verify command:

Detected asynchronous prefetch enabled

Detected asynchronous prefetch should be enabled to achieve the best
performance of this command. Beginning with Oracle Rdb V7.0, by
default, detected asynchronous prefetch is enabled.

Enhancements to verification of pointers to table rows

The RMU Verify command has changed the way it verifies pointers to
table rows in indexes. In prior versions, RMU Verify tried to retrieve the
table row pointed to by an index. Now, the Oracle RMU verify operation
creates a sorted list of all dbkeys for a table and a sorted list of all dbkeys
in an index and, displays discrepancies it finds between the two lists.
This helps the verify operation run faster and, it allows the operation to
detect any cases of an index missing an entry for a data row.

Enhancements to the Constraints qualifier

The Constraints qualifier now lets you specify one or more specific
constraints or tables for which constraints should be verified.

Routine verification provided

The Routine qualifier lets you specify that all routines (functions and
procedures) stored in the database are to be verified by Oracle RMU. The
qualifier is synonymous with the Functions qualifier.

Logical area verification included with index verification

1–40 Information About This Release

When you specify the Index and Data qualifiers with the RMU Verify
command, Oracle RMU now includes verification of all the logical areas
referenced by the specified index or indexes.

See the Oracle RMU Reference Manual for details.

• Windows Statistics command is no longer valid

The RMU Windows Statistics command is obsolete for Oracle Rdb V7.0. See
Section 1.5.3 for details.

• RMUwin DECwindows Motif interface is obsolete

The RMUwin DECwindows Motif interface is no longer available on
OpenVMS or Digital UNIX. See Section 1.5.3 for details.

1.10.1 Enhancements to the RMU Convert Command
In Oracle Rdb V7.0, index prefix cardinalities are automatically maintained.
Databases prior to V7.0 do not contain index prefix cardinality information.
Therefore, when a database is converted to V7.0 or higher, the RMU
Convert command collects and stores the index prefix cardinalities for each
multisegmented sorted index in the database.

Because the collection of index prefix cardinality information upon conversion
of a large database can take a considerable amount of time, the RMU Convert
command issues a new prompt that gives you the option of either computing or
estimating the index prefix cardinalities. The default is to estimate. If you opt
for estimation, the index prefix cardinalities are derived from the existing index
cardinality stored in the database.

If you choose the estimate option, Oracle Rdb highly recommends that you
execute an RMU Collect Optimizer_Statistics command after successful database
conversion. Doing so replaces the estimated index prefix cardinality values with
the real values. The following example shows the command syntax for OpenVMS:

$ RMU/COLLECT OPTIMIZER_STATISTICS <root-file-spec>/NOTABLES -
$_ /STATISTICS=CARDINALITY

Because of the NoTables qualifier, this command collects only index cardinalities
including index prefix cardinalities.

1.10.2 Just_Page Qualifier for RMU Restore and Recover Replaced with
Just_Corrupt Qualifier

The Just_Page qualifier is no longer valid for the RMU Restore and Recover
commands. The Just_Page qualifier is replaced by the Just_Corrupt qualifier.
The Just_Corrupt qualifier differs from the Just_Page qualifier in the following
ways:

• In previous versions of Oracle Rdb, if you specified the Just_Page qualifier
as a local qualifier for an area, you could set individual pages in an area
corrupt at the beginning a restore operation. The Just_Corrupt qualifier does
not allow you to set specific pages corrupt. If you need to set specific pages
corrupt, use the RMU Set Corrupt_Pages command before executing the RMU
Restore command. By disallowing additions to the corrupt page table as
part of the restore operation, Oracle RMU prevents some unusual situations
from occurring (for example, overflowing the corrupt page table while adding
corrupt pages during a restore operation).

Information About This Release 1–41

$! In V6.0 and 6.1, you could add corrupt pages to the
$! corrupt page table as part of the restore operation:
$!
$ RMU/RESTORE MF_PERSONNEL.RBF EMPIDS_LOW/JUST_PAGE=60
$!
$! Beginning with V7.0, setting corrupt pages is
$! separate from restoring corrupt pages:
$!
$ RMU/SET CORRUPT_PAGES /CORRUPT /AREA=EMPIDS_LOW /PAGE=60 MF_PERSONNEL
$ RMU/RESTORE MF_PERSONNEL.RBF EMPIDS_LOW/JUST_CORRUPT

• Prior to V7.0, if you specified the Just_Page qualifier as a global qualifier
for the RMU Restore command, Oracle RMU would try to restore all corrupt
pages in the corrupt page table. Now, if you specify the Just_Corrupt qualifier
as a global qualifier for the RMU Restore command, Oracle RMU restores
all corrupt storage areas and corrupt pages. This allows you to specify one
Restore command and allows Oracle RMU to make one pass through the
backup file to restore all known corruptions in the database.

$! In V6.0 and 6.1, you restored corrupt areas with one RMU Restore command,
$! and restored corrupt pages with a second RMU Restore command:
$!
$ RMU/RESTORE/JUST_PAGES MF_PERSONNEL.RBF
$ RMU/RESTORE/AREA MF_PERSONNEL.RBF <LIST OF CORRUPT AREAS>
$!
$! Beginning with V7.0, you restore corrupt areas and corrupt
$! pages with one RMU Restore command:
$!
$ RMU/RESTORE/JUST_CORRUPT MF_PERSONNEL.RBF

• Previous versions did not let you mix a by-area restore operation of some
areas with a just-page restore of other areas in the same command. Now,
you can now combine these two operations in the same command. Note that
if you specify the Recover qualifier with the Restore command, the recover
operation recovers all areas and pages that were restored during the restore
operation.

$! In V6.0 and 6.1, you were required to use separate commands for restoring
$! areas and restoring corrupt pages:
$!
$ RMU/RESTORE/AREA MF_PERSONNEL.RBF EMPIDS_MID
$ RMU/RESTORE/AREA MF_PERSONNEL.RBF EMPIDS_LOW, JOBS
$!
$! Beginning with V7.0, you can combine a by-area restore
$! operation and a restore of corrupt pages in one command:
$!
$ RMU/RESTORE MF_PERSONNEL.RBF EMPIDS_LOW, EMPIDS_MID/JUST_CORRUPT, JOBS

• In previous versions, if you specified the Just_Page qualifier with the Recover
command, Oracle RMU recovered only inconsistent pages. Now, when
you specify the Just_Corrupt qualifier with the Recover command, Oracle
RMU recovers all inconsistent areas and inconsistent pages The behavior
of automatic recovery has been changed so that Oracle RMU recovers
inconsistent pages as well as inconsistent areas. This makes the automatic
recovery operation semantically the same as an RMU Recover command with
the Just_Corrupt qualifier specified. Request an automatic recover operation
by specifying the Area qualifier without a list of areas.

1–42 Information About This Release

$! In V6.0 and 6.1, you specified recovery of inconsistent areas in one
$! command and recovery of inconsistent pages in another command:
$!
$ RMU/RECOVER/AREA MF_PERSONNAL.AIJ EMPIDS_LOW, JOBS
$ RMU/RECOVER /JUST_PAGES MF_ERSONNEL.AIJ
$!
$! Beginning with V7.0, you can specify recovery of inconsistent areas and
$! pages in one command. You can use either of the following two commands
$! to obtain the same results:
$!
$ RMU/RECOVER/AREA MF_PERSONNEL.AIJ
$!
$! or:
$!
$ RMU/RECOVER/JUST_CORRUPT MF_PERSONNEL.AIJ

1.11 New Features in the Performance Monitor
The following sections describe new features for the Performance Monitor (the
RMU Show Statistics utility.)

In addition to the new screens and features described in the following sections,
the Performance Monitor contains the following new features:

• Stall Message logging

The RMU Show Statistics command has been enhanced to allow you to write
all stall messages to a log.

The Stall_Log=file-spec qualifier specifies that stall messages are to be
written to the specified file. This can be useful when you notice a great
number of stall messages being generated, but do not have the resources on
hand to immediately investigate and resolve the problem. The file generated
by the Stall_Log qualifier can be reviewed later so that the problem can be
traced and resolved. You can enable stall message logging at any time. For
more information, see the Oracle RMU Reference Manual and the Oracle
Rdb7 Guide to Database Performance and Tuning.

• Reopening output files

You can now access the database statistics output file without having
to detach from the database and rundown the image. A new RMU
Show Statistics qualifier, Reopen_Interval=minutes, causes the utility to
periodically close the current output file and open a new file.

After the specified interval, it closes the current output file and opens a new
output file without requiring you to exit from the Performance Monitor.

This qualifier allows you to view data written to the output file while the
Performance Monitor is running. For more information, see the Oracle RMU
Reference Manual.

• Dbkey logging

Tools like the Performance Monitor can help solve a current problem within
the database. But most problems are solved within a limited timeframe.
Because most customers are running Oracle Rdb in a 7x24 hour environment,
it is not always possible to have an expert readily available. This means most
customers cannot trace a problem until after it has occurred and been solved.

Information About This Release 1–43

The Performance Monitor now provides a dbkey logging mechanism, the RMU
Show Statistics Dbkey_Log=file-spec qualifier, to record the dbkeys and help
identify the records accessed during a given processing period by the various
attached processes. This log can help an expert to trace a problem. You can
enable logging at any time.

For more information, see the Oracle RMU Reference Manual.

• Database Dashboard facility

The Database Dashboard displays the actual database parameter and
attribute settings used by the processes attached to the database, both the
global database and individual database processes. Optionally, it allows
the dynamic and non-persistent updating of certain database parameters
and attributes on a single node at run time. You can actively or passively
broadcast to all active database processes on the node upon which the
changes were made. You can examine the net effect of these changes at run
time without having to restart database processes.

The facility is known as the Database Dashboard because you can actually
‘‘drive’’ the database faster or slower and immediately see the impact or
benefit of changing certain database settings higher or lower.

For more information, see the Performance Monitor Help.

• Easier page migration

When viewing a screen containing multiple pages, you now can use the
up-arrow and down-arrow keys to migrate around the various pages in a
circular manner. The ">" and "<" continue to operate as before; that is, the
">" stops at the last page and the "<" stops at the first page.

For instance, when positioned on the first page of a screen, the "<" key does
not change pages, while the up-arrow key moves to the last page of the
screen. Conversely, when positioned on the last page of a screen, the ">" key
does not change pages, while the down-arrow key moves to the first page of
the screen.

For more information, see the Oracle Rdb7 Guide to Database Performance
and Tuning.

• Automatically migrating through the Performance Monitor screens

The Performance Monitor now includes a new qualifier, [No]Cycle=seconds,
that lets you automatically cycle through the set of screens associated with
the currently selected menu item. When you specify the Cycle qualifier, you
can change screen modes or change submenus as desired; cycling through
the menus associated with your choice at whichever menu level is currently
selected.

When the Cycle qualifier is specified, the Performance Monitor continues to
operate normally. You can change screen modes or change submenus at will,
however, the cycle operation continues at the current menu level.

For more information, see the Oracle Rdb7 Guide to Database Performance
and Tuning and the Oracle RMU Reference Manual.

• Search mode for Performance Monitor screens

Often, it is necessary to quickly locate a Performance Monitor screen that
contains activity, because it is not always apparent what database activity
is occurring. Previously, the only method available to accomplish this was
to manually migrate through the available statistics screen and search the
screen for activity.

1–44 Information About This Release

You can now use the space bar to initiate a search for the next data screen
in the current submenu group that has current activity. If there is no screen
in the current submenu group that has activity, the Performance Monitor
places you at the next screen, exactly as if you had used the Next Screen key.
Also, computational screens (such as the Row Cache Computations screen)
and informational screens (such as the Stall Messages, Monitor Log or AIJ
Journal Information screens) are ignored during the search for active data.

The search-mode is available during replay of a binary input file.

For more information, see the Oracle Rdb7 Guide to Database Performance
and Tuning.

• Zoom screens

It is often necessary to quickly review detailed information about a storage
area or active database process. Typically, this need occurs while reviewing
one of the by-area or per-process screens when some event occurs that
warrants further investigation.

Zoom screens have been added to most by-area and per-process screens. A
zoom screen is a subwindow that displays detailed information about a
specific screen item, typically a lock, process or storage area. Note that a
zoom screen is a static snapshot of information. Unlike normal statistics
displays, the screen information does not change.

A screen that has zoom capability displays the zoom onscreen-menu option.
The following screens have zoom screen capability:

Stall Messages
Active Stall Messages
Process Accounting
Checkpoint Information
CPU Utilization
DBR Activity
Lock Timeout History
Lock Deadlock History
DBKEY Information
File IO Overview
File Locking Overview
AIJ Journal Information

• Pausing the Performance Monitor display

The Pause onscreen menu option causes the screen to pause the output
without affecting the operation of the utility.

Press the P key to pause the screen display. The Pause onscreen menu
option is highlighted, indicating that the display is paused. While the display
is paused, all onscreen menu options are operational, therefore, broadcast
messages continue to be delivered. To release the screen display, press the P
key again.

Only screens that have the pause onscreen-menu option are affected by the
pause screen. Other screens continue to be updated and cannot be paused.
Note that while a screen is paused you are free to migrate to other screens
without affecting the pause status.

• Switching databases without exiting the Performance Monitor

Information About This Release 1–45

You can switch databases without exiting the Performance Monitor by using
the new menu option, Switch Database, of the Notepad Facility. When
you select this option, the Performance Monitor prompts you for the file
specification for the new database you want to open. When you enter a
new database file specification, the current database is closed and the new
database is opened. If the new database cannot open for any reason, the
previously opened database is opened again.

The ability to open a new database is not available if you are replaying a
binary input file, using the Input qualifier, or recording a binary output file,
using the Output qualifier.

• Moving more easily between screens using plus (+) and minus (-) keys

You can use the plus sign (+) to move forward and the minus sign (-) to
move backward through screens. When you enter either the plus sign (+) or
minus sign (-), the utility prompts you to enter the number of screens to move
forward or backward. However, if you enter the number 0, the utility accesses
the first or last screen depending on the keystroke command:

When using the plus sign (+), the utility moves to the last screen

When using the minus sign (-) , the utility moves to the first screen

OpenVMS
VAX

OpenVMS
Alpha

• Displaying elapsed number of days

The Performance Monitor now displays the number of elapsed days if the
elapsed time has exceeded 24 hours. ♦

• Changes to the onscreen menu options

The Performance Monitor has expanded onscreen menu options, causing the
following changes for Version 7.0:

Display_menu is now Menu. You can now use either the D key (as before)
or the M key (new) to bring up the main menu.

Write_screen is now Write.

1.11.1 New Screens
The Performance Monitor now contains the following new screens and menus:

• Lock Statistics submenu

The Lock Statistics submenu contains a class of screens that displays
information about locks that are specific to database storage areas and
snapshot areas. This information is vital in determining which storage areas
have the most locking activity and analyzing the validity of storage area
partitioning.

The Lock Statistics submenu is accessed from the main menu.

• Online Analysis facility

The Online Analysis facility identifies items of interest to the DBA for further
investigation into possible performance problems. It contains nine analysis
screens. The Online Analysis facility is available only during online database
access. It is not available during replay of a binary input file.

The Online Analysis facility is accessed from the main menu.

• Recovery Statistics screen

1–46 Information About This Release

The Recovery Statistics screen provides information useful to the DBA in
determining proper database attributes and parameter settings that ensure
timely and efficient process recovery. It identifies various recovery phases and
collects information on how long it takes each phase to complete. The screen
provides global information on all failed process recoveries, not individual
process recoveries.

The Recovery Statistics screen is accessed from the Journal Information
submenu.

• 2PC Statistics screen

The 2PC Statistics screen provides information on the performance of
distributed (2PC) transactions. It provides information about how distributed
transaction performance differs from non-distributed transaction performance.
The information displayed on the screen is written to the binary output file
and is available during binary input file replay.

The 2PC Statistics screen is accessed from the Journal Information submenu.

• Active User Chart

The Active User Chart graphically portrays the number of currently active
users attached to the database over a measured period of time.

This screen is accessed from the Process Information submenu.

• DBKEY Information screen

The DBKEY Information screen allows you to determine which database
pages are being accessed by any or all processes attached to the database.
The screen is especially useful for identifying collisions on hot pages.

This screen is accessed from the Process Information submenu.

• Monitor Log screen

The Monitor Log screen allows you to view the monitor log online, even when
disk-based logging is disabled because of disk-space problems. Also, it allows
you to know when the monitor logging is disabled.

This screen is accessed from the Process Information submenu.

• AIJ Journal Growth Trend screen

The AIJ Journal Growth Trend screen graphically portrays the size of the
current AIJ Journal over a measured period of time.

This screen is accessed from the Journaling Information submenu.

• ALS Statistics screen

The ALS Statistics screen allows you to track the effectiveness of the AIJ Log
Server process.

This screen is accessed from the Journaling Information submenu.

• RUJ Statistics screen

The RUJ Statistics screen contains summary information for all active update
transactions on the current node.

This screen is accessed from the Journaling Information submenu.

Information About This Release 1–47

OpenVMS
VAX

OpenVMS
Alpha

• OpenVMS SYSGEN Parameters screen

The SYSGEN Parameters screen allows you to review SYSGEN parameter
settings without exiting from the Performance Monitor.

This screen is accessed from the Database Parameter Information submenu.
♦

• RCS Statistics screen

The RCS Statistics screen provides information on the run-time operation of
the Row Cache Server process.

This screen is accessed from the Row Cache Information submenu.

• Row Cache Queue Length screen

While the row cache feature saves I/O operations, poor CPU performance
can result if many hash table collisions occur. The Row Cache Queue Length
screen helps determine the relative CPU performance impact of the caching
of the rows.

This screen is accessed from the Row Cache Information submenu.

• Row Cache Length screen

This screen graphically describes the distribution of the various row lengths
within a particular row cache.

To know how well sized the row cache is, you must know the distribution of
the various row lengths in the row cache. For instance, knowing that each
cache entry is wasting even 5 bytes is significant if there are 100,000 entries
in the cache.

This screen is accessed from the Row Cache Information submenu.

• Summary Cache Statistics screen

The Summary Cache Statistics screen provides summary information for all
row caches in the database.

This screen is accessed from the main menu.

• Row Cache (One Cache) screen

The Row Cache (One Cache) screen provides summary information for a
specific row cache. This screen is similar to the Summary Cache Statistics
screen, except that it displays the data for a particular row cache.

This screen is accessed from the main menu.

• Row Cache Utilization screen

The Row Cache Utilization screen provides utilization information in a
graphical format for a specific row cache.

This screen is accessed from the Row Cache Information submenu.

• Hot Record Information screen

Hot Record Information screen identifies the most frequently accessed records
for a specific row cache.

This screen is accessed from the Row Cache Information submenu.

• Row Cache Status screen

The Row Cache Status screen provides overall status for a specific row cache.

This screen is accessed from the Row Cache Information submenu.

1–48 Information About This Release

OpenVMS
VAX

OpenVMS
Alpha

• Device Information screen

The Device Information screen provides an online view of the storage-area
device information local to a particular database.

This screen is accessed from the IO Statistics (by file) submenu. ♦

• Scatter Plot screen

You can now determine the composition of average rate statistic values using
a new class of screen display known as the Scatter Plot. The Scatter Plot
display looks similar to the Transaction Duration display. However, it shows
information for a selected statistics field on the current screen, similar in
many respects to the existing Time Plot display. The Scatter Plot display
shows information on the current rate of that statistics field in the form of a
vertical histogram.

You select the Scatter Plot display with the X_plot of the onscreen menu
option. After entering the X, a menu of the existing screen fields is displayed.
Then, you select the single statistics field that you want to examine.

• Database Parameter Information submenu

The Database Parameter Information submenu allows you to examine
database parameter settings from within the Performance Monitor.

The Database Parameter Information submenu has the following options:

A. General Information

B. Buffer Information

C. Lock Information

D. Storage Area Information

E. Row Cache Information

F. Journaling Information

G. Fast Commit Information

H. Hot Standby Information

I. Audit Information

J. Active User Information

K. OpenVMS SYSGEN Information (OpenVMS only)

The Database Parameter Information submenu is accessed from the main
menu.

For more information about the new screens, see the Performance Monitor Help.

1.11.2 Enhancements to Existing Screens
The Performance Monitor provides the following enhancements to existing
screens:

• Per-Area Pages Checked Statistics

Oracle Rdb collects pages checked statistics on a per file basis and displays
the information in the File IO Overview screen.

• Filter onscreen-menu option for the Stall Messages screen

Information About This Release 1–49

The Filter option allows you to enter a case-insensitive search string that is
used to filter the stall messages. Only those stall messages that contain the
specified search string are displayed. The Filter option is also available using
the Config onscreen-menu option used to configure the screen display.

For more information, see the Oracle Rdb7 Guide to Database Performance
and Tuning and the Performance Monitor help.

• Checkpoint Information screen

The Checkpoint Information screen has a new Config onscreen-menu option
that contains the following configuration options:

A. Display Transaction Elapsed Time

B. Unsorted Display

C. Sort by oldest active checkpoint

D. Sort by oldest active transaction

E. Sort by oldest quiet point

For more information, see the Performance Monitor help.

• Sorting in File IO Overview screen

The Performance Monitor on Windows NT, Windows95, and Windows 3.1 now
allows sorting of the File IO Overview screen. To sort on a given column, click
on the column header.

Note that there is a known problem in that reconfigured screens are not
sorted properly. If you add or delete columns from the display screen,
subsequent sorts may not be correct.

1.12 System Metadata Changes
Oracle Rdb V7.0 has added or changed the following system metadata
components:

• New domain definitions

• New creator columns added to record the user name of the creator of the
object.

• New optional system table, RDB$WORKLOAD

• New generic columns, RDB$CREATED and RDB$LAST_ALTERED, added to
record timestamps of metadata changes and a new column for RDB$FIELDS
table to be used as a bitmask

• New index for the Replication Option for Rdb optional system table
RDB$TRANSFER_RELATIONS

• New LIST OF BYTE VARYING output for system tables

1.12.1 Domain Changes
A new system domain, RDB$CARDINALITY, is now used for the
RDB$CARDINALITY column in RDB$INDICES and RDB$RELATIONS. It is also
used for the new RDB$CARDINALITY column in RDB$INDEX_SEGMENTS.

A new system domain, RDB$FACTOR, is used for several new columns which
record fractional, or approximate values.

1–50 Information About This Release

A new system domain, RDB$PROBABILITY, is used for the RDB$NULL_
FACTOR column to record the fraction of rows which contain NULL.

A new system domain, RDB$TIMESTAMP, is used for all the RDB$LAST_
ALTERED and RDB$CREATED columns.

A new system domain, RDB$TINY_BIT_MASK, is used for the new RDB$FLAGS
column for the RDB$FIELDS table.

1.12.2 Owner and Create/Alter Timestamps
Two timestamp columns and a creator column have been added to the following
tables, which describe created objects:

RDB$CATALOG_SCHEMA (optional multischema table)
RDB$COLLATIONS
RDB$CONSTRAINTS
RDB$DATABASE
RDB$FIELDS
RDB$INDICES
RDB$MODULES
RDB$QUERY_OUTLINES
RDB$RELATIONS
RDB$ROUTINES
RDB$TRIGGERS
RDB$WORKLOAD (optional workload collection table)

The timestamps record when the object was created (or converted from a version
prior to V7.0), and when it was last altered by the user. Note that updates due to
cardinality changes or index root dbkeys are not recorded. This change is based
on a recent change to the SQL PSM (Persistent Stored Modules) definition. The
PSM is likely to become an addendum to SQL92, the current ANSI and ISO SQL
Standard.

The object creator column records the current user name of the user who created
the object (or converted the database from a version prior to V7.0).

1.12.3 Optional RDB$WORKLOAD Table
RDB$WORKLOAD is an optional system table, similar to RDB$SYNONYMS
and RDB$CATALOG_SCHEMA. It is created when you specify the WORKLOAD
COLLECTION IS ENABLED clause in a CREATE or ALTER DATABASE
statement. Once created, this table can never be dropped. Optional system tables
also have row compression enabled to conserve space.

A unique index, RDB$WRKLD_ID_FLD_NDX is also created on the two columns
(RDB$RELATION_ID, RDB$FIELD_GROUP).

Table 1–2 shows the columns for the RDB$WORKLOAD Table.

Table 1–2 Columns for RDB$WORKLOAD Table

Column Name Data Type Domain Name Comments

RDB$CREATED DATE VMS RDB$TIMESTAMP Time profile entry was created

RDB$LAST_ALTERED DATE VMS RDB$TIMESTAMP Last time statistics were updated

(continued on next page)

Information About This Release 1–51

Table 1–2 (Cont.) Columns for RDB$WORKLOAD Table

Column Name Data Type Domain Name Comments

RDB$DUPLICITY_FACTOR BIGINT(7) RDB$FACTOR Value ranges from 1.0 to table cardinality.
Number of duplicate values for an interesting
column group (RDB$FIELD_GROUP). The
pathological case is when all rows have the
same value for an interesting column group,
making the duplicity factor equal to table
cardinality. (This extreme case should rarely
happen.)

RDB$NULL_FACTOR INTEGER(7) RDB$PROBABILITY Value ranges from 0.0 to 1.0. This is the
proportion of table rows that have NULL in
one or more columns of an interesting column
group

RDB$RELATION_ID INTEGER RDB$OBJECT_ID Base table ID

RDB$FLAGS INTEGER RDB$BIT_MASK Reserved for future use

RDB$FIELD_GROUP CHAR(31) RDB$OBJECT_NAME Contains up to 15 sorted field-ids

RDB$SECURITY_CLASS CHAR(20) RDB$SECURITY_
CLASS

Reserved for future use

1.12.4 Modified System Tables
The following tables describe additional or modified columns for Oracle Rdb V7.0.

Table 1–3 shows the new columns for the RDB$COLLATIONS table.

Table 1–3 New Columns for RDB$COLLATIONS Table

Column Name Data Type Domain Name Comments

RDB$CREATED DATE VMS RDB$TIMESTAMP Set when the collating sequence is created

RDB$LAST_ALTERED DATE VMS RDB$TIMESTAMP Reserved for future use

RDB$COLLATION_CREATOR CHAR(31) RDB$OBJECT_OWNER Creator of this collating sequence

Table 1–4 shows the new columns for the RDB$CONSTRAINTS table.

Table 1–4 New Columns for RDB$CONSTRAINTS Table

Column Name Data Type Domain Name Comments

RDB$CREATED DATE VMS RDB$TIMESTAMP Set when the constraint is created

RDB$LAST_ALTERED DATE VMS RDB$TIMESTAMP Reserved for future use

RDB$CONSTRAINT_CREATOR CHAR(31) RDB$OBJECT_OWNER Creator of this constraint

Table 1–5 shows the new columns for the RDB$DATABASE table.

Table 1–5 New Columns for RDB$DATABASE Table

Column Name Data Type Domain Name Comments

RDB$CREATED DATE VMS RDB$TIMESTAMP Set when the database is created

(continued on next page)

1–52 Information About This Release

Table 1–5 (Cont.) New Columns for RDB$DATABASE Table

Column Name Data Type Domain Name Comments

RDB$LAST_ALTERED DATE VMS RDB$TIMESTAMP Set when you use ALTER DATABASE to
change the RDB$DATABASE row

RDB$DATABASE_CREATOR CHAR(31) RDB$OBJECT_OWNER Creator of this database

RDB$DEFAULT_STORAGE_
AREA_ID

INTEGER RDB$OBJECT_ID Default storage area used for unmapped
persistent tables and indexes

RDB$DEFAULT_TEMPLATE_
AREA_ID

INTEGER RDB$OBJECT_ID Reserved for future use

Table 1–6 shows the new columns for the RDB$FIELDS table.

Table 1–6 New Columns for RDB$FIELDS Table

Column Name Data Type Domain Name Comments

RDB$FLAGS TINYINT RDB$TINY_BIT_MASK

RDB$CREATED DATE VMS RDB$TIMESTAMP Set when the domain is created

RDB$LAST_ALTERED DATE VMS RDB$TIMESTAMP Set when ALTER DOMAIN is used

RDB$FIELD_CREATOR CHAR(31) RDB$OBJECT_OWNER Creator of this domain

In a future version, the RDB$FLAGS column will be changed to an INTEGER
data type to be consistent with the existing RDB$FLAGS columns in other tables.
The new domain RDB$TINY_BIT_MASK is created only to support the data type
of the new RDB$FLAGS column for RDB$FIELDS table, and may not exist in a
future version.

Table 1–7 shows the new columns for the RDB$INDEX_SEGMENTS table.

Table 1–7 New Columns for RDB$INDEX_SEGMENTS Table

Column Name Data Type Domain Name Comments

RDB$CARDINALITY BIGINT RDB$CARDINALITY Prefix cardinality for this and all prior key
segments (assumes sorting by ordinal position)

Table 1–8 shows the new columns for the RDB$INDICES table.

Table 1–8 New Columns for RDB$INDICES Table

Column Name Data Type Domain Name Comments

RDB$CREATED DATE VMS RDB$TIMESTAMP Set when the index is created.

RDB$LAST_ALTERED DATE VMS RDB$TIMESTAMP Set when ALTER INDEX is used.

RDB$INDEX_
CREATOR

CHAR(31) RDB$OBJECT_
OWNER

Creator of this index.

(continued on next page)

Information About This Release 1–53

Table 1–8 (Cont.) New Columns for RDB$INDICES Table

Column Name Data Type Domain Name Comments

RDB$KEY_CLUSTER_
FACTOR

BIGINT(7) RDB$FACTOR Sorted Index: The ratio of the number of clump
changes that occur when you traverse Level 1 index
nodes and the duplicate node chains to the number of
keys in the index. This statistic is based on an entire
index traversal. This means the last duplicate node
of the current key is compared with the first duplicate
node of the next key for clump change.

Hash Index: The average number of clump changes
that occur when you go from system record to hash
bucket to overflow hash bucket (if fragmented), and
traverse the duplicate node chain for each key. This
statistics is based on per-key traversal.

RDB$DATA_CLUSTER_
FACTOR

BIGINT(7) RDB$FACTOR Sorted Index: The ratio of the number of clump
changes that occur between adjacent dbkeys in the
duplicate chains of all keys to the number of keys in
the index. For a unique index, the dbkeys of adjacent
keys are compared for clump change. This statistic is
based on an entire index traversal. This means the
last dbkey of the current key is compared with the
first dbkey of the next key for clump change.

Hashed Index: The average number of clump changes
that occur between adjacent dbkeys in a duplicate
chain for each key. For a unique index, this value
is always 1. This statistics is based on per-key
traversal.

RDB$INDEX_DEPTH INTEGER RDB$COUNTER Sorted Index: The depth of the B-tree.

Hashed Index: This column is not used for hashed
indexes and is left as 0.

Table 1–9 shows the changed columns for the RDB$INDICES table.

Table 1–9 Changed Columns for RDB$INDICES Table

Column Name
Data
Type Domain Name Comments

RDB$CARDINALITY BIGINT RDB$CARDINALITY Change to use new domain

Table 1–10 shows the new columns for the RDB$MODULES table.

Table 1–10 New Columns for RDB$MODULES Table

Column Name Data Type Domain Name Comments

RDB$CREATED DATE VMS RDB$TIMESTAMP Set when the module is created.

RDB$LAST_ALTERED DATE VMS RDB$TIMESTAMP Set when ALTER MODULE is used (future).

RDB$MODULE_CREATOR CHAR(31) RDB$OBJECT_OWNER Creator of this module. Differentiates between
OWNER and AUTHORIZATION.

Table 1–11 shows the new columns for the RDB$QUERY_OUTLINES table.

1–54 Information About This Release

Table 1–11 New Columns for RDB$QUERY_OUTLINES Table

Column Name Data Type Domain Name Comments

RDB$CREATED DATE VMS RDB$TIMESTAMP Set when the outline is created

RDB$LAST_ALTERED DATE VMS RDB$TIMESTAMP Reserved for future use

RDB$OUTLINE_CREATOR CHAR(31) RDB$OBJECT_OWNER Creator of this outline

Table 1–12 shows the new columns for the RDB$RELATIONS table.

Table 1–12 New Columns for RDB$RELATIONS Table

Column Name Data Type Domain Name Comments

RDB$CREATED DATE VMS RDB$TIMESTAMP Set when the table is created. (For system
tables it is the same as the database
creation timestamp.)

RDB$LAST_ALTERED DATE VMS RDB$TIMESTAMP Set when ALTER TABLE, CREATE/ALTER
STORAGE MAP, or ALTER DOMAIN cause
changes to the table.

RDB$RELATION_CREATOR CHAR(31) RDB$OBJECT_OWNER Creator of this table.

RDB$ROW_CLUSTER_
FACTOR

BIGINT(7) RDB$FACTOR The ratio of the number of clump changes
that occur when you sequentially read the
rows to the number of rows in a table. If a
row is fragmented and part of its fragment
is located in a clump different from the
current one or immediate next one, it
should be counted as a clump change.

Table 1–13 shows the changed columns for the RDB$RELATIONS table.

Table 1–13 Changed Columns for RDB$RELATIONS Table

Column Name Data Type Domain Name Comments

RDB$CARDINALITY BIGINT RDB$CARDINALITY Change to use new domain

Table 1–14 shows the new columns for the RDB$ROUTINES table.

Table 1–14 New Columns for RDB$ROUTINES Table

Column Name Data Type Domain Name Comments

RDB$CREATED DATE VMS RDB$TIMESTAMP Set when the routine is created.
(The same as the parent module’s
creation timestamp.)

RDB$LAST_ALTERED DATE VMS RDB$TIMESTAMP Reserved for future use.

RDB$ROUTINE_CREATOR CHAR(31) RDB$OBJECT_OWNER Creator of this routine.
Differentiates between
AUTHORIZATION and OWNER.

Table 1–15 shows the new columns for the RDB$TRIGGERS table.

Information About This Release 1–55

Table 1–15 New Columns for RDB$TRIGGERS Table

Column Name Data Type Domain Name Comments

RDB$CREATED DATE VMS RDB$TIMESTAMP Set when the trigger is created

RDB$LAST_ALTERED DATE VMS RDB$TIMESTAMP Reserved for future use

RDB$TRIGGER_CREATOR CHAR(31) RDB$OBJECT_OWNER Creator of this trigger

Table 1–15 shows the new columns for the RDB$CATALOG_SCHEMA table.

Table 1–16 New Columns for RDB$CATALOG_SCHEMA Table

Column Name Data Type Domain Name Comments

RDB$SECURITY_CLASS CHAR(20) RDB$SECURITY_
CLASS

Reserved for future use

RDB$CREATED DATE VMS RDB$TIMESTAMP Set when the schema or catalog is created

RDB$LAST_ALTERED DATE VMS RDB$TIMESTAMP Reserved for future use

RDB$CATALOG_SCHEMA_
CREATOR

CHAR(31) RDB$OBJECT_OWNER Creator of this schema or catalog

1.12.5 Changes to RDB$TRANSFER_RELATIONS Table
The table RDB$TRANSFER_RELATIONS is created by the Replication Option for
Rdb. In versions of Oracle Rdb prior to V7.0, it did not have an index associated
with it and so Oracle Rdb was forced to perform sequential scans when loading
metadata for a transfer enabled database.

To improve performance, Oracle Rdb now detects this table name during table
creation and automatically creates the duplicates index RDB$TRAN_RELS_REL_
NAME_NDX on the column RDB$RELATION_NAME.

The duplicates index is also added when the database is converted with the RMU
Convert command.

1.12.6 Metadata LIST OF BYTE VARYING Changes
In previous versions, Oracle Rdb has supported multiple segment LIST OF BYTE
VARYING data types for user-defined data. However, Oracle Rdb maintained
its own LIST OF BYTE VARYING metadata columns as single segments. This
restricted the length to approximately 65530 bytes. A CREATE TRIGGER or
CREATE MODULE statement could fail due to this restriction.

In V7.0, this limit has been lifted by changing the way Oracle Rdb stores its
system metadata.

• For columns containing binary data, such as the binary representation of
a query, routine, constraint, trigger action, computed by column, or query
outline, Oracle Rdb breaks the data into pieces that best fit the system
storage area page size. Thus, the segments are all the same size with a
possible small trailing segment.

The LIST OF BYTE VARYING column value is no longer fragmented,
improving performance when reading system metadata.

1–56 Information About This Release

• For columns containing text data, such as the SQL source (for elements such
as triggers and views) and user-supplied comment strings, Oracle Rdb breaks
the text at line boundaries (indicated by ASCII carriage returns and line
feeds) and stores the text without the line separator. Thus, the segments are
of varying size with a possible zero length for blank lines.

An application can now easily display the LIST OF BYTE VARYING column
value and the application no longer needs to break up the single text segment
for printing.

No change is made to the LIST OF BYTE VARYING column values when a
database is converted (using RMU Convert, RMU Restore, or SQL EXPORT
/IMPORT) from a previous version.

Applications that read the Oracle Rdb system LIST OF BYTE VARYING column
values must be changed to understand multiple segments. Applications that
do not read these system columns should see no change to previous behavior.
Tools such as the RMU Extract command and the SQL SHOW and EXPORT
statements handle both the old and new formats of the system metadata.

1.13 Application Compatibility Between Oracle Rdb Versions
OpenVMS
VAX

OpenVMS
Alpha

Versions of Oracle Rdb are upwardly compatible, with a few exceptions.
Upwardly compatible means that you do not need to recompile or relink existing
applications when you upgrade to a new version of Oracle Rdb.

All previous versions of Oracle Rdb are compatible with Version 7.0, except for
the following releases:

• Oracle Rdb V4.0 and V4.0A

Object files and executables are not upwardly compatible. Users must
recompile and relink their applications to upgrade to a higher version.

The incompatibilities are fixed in V4.0B.

• Oracle Rdb V4.2

Executables are not upwardly compatible. However, the incompatibilities are
fixed in the Mandatory Update V4.2A.

To upgrade to a higher version, users must upgrade to V4.2A or relink their
applications.

• Oracle Rdb for OpenVMS VAX V5.0 (This was a limited distribution release.)

Executables are not upwardly compatible. Users must relink their
applications to upgrade to a higher version.

1.14 Software Requirements
For information about the minimum versions of operating systems and software
requirements for Oracle Rdb V7.0, see the web page at the following URL:

http://www.oracle.com/products/servers/rdb/html/Matrix.html

1.15 Documentation for This Release
The following sections list the documentation available for this release and the
order numbers for each manual.

To order Oracle documentation, contact Oracle Support and Documentation Sales
at 1-800-252-0303 or 415-506-5988.

Information About This Release 1–57

1.15.1 Online Documentation Format
In previous releases, Oracle Rdb has provided online documentation in
Bookreader format. For V7.0, we continue to provide this format. However,
we will not provide Bookreader format in releases after V7.0. For the next
release, we will provide a more portable format.

For V7.0, in addition to Bookreader format, we are providing some of the
documentation in Adobe Acrobat format, HTML format, and Postscript files. The
documentation in Bookreader, Postscript, and HTML format is available on the
Oracle Rdb software CD–ROM. The documentation in Adobe Acrobat format is
available on the Rdb Client kits CD–ROM.

Documentation in Adobe Acrobat Format
You can view the documentation in Adobe Acrobat format using the Acrobat
Reader, which allows anyone to view, navigate, and print documents in the Adobe
Portable Document Format (PDF). See http://www.adobe.com for information
about obtaining a free copy of Acrobat Reader and for information on supported
platforms.

The documentation in Adobe Acrobat format is available on the Rdb Client kits
CD–ROM, in the directory RDBDOC. The files are provided in a self-extracting
archive (rdb7pdf.exe) file for Windows NT and Windows 95 systems.

To maintain the directory structure, use the -d qualifier when you run the archive
file to extract the files.

The following table maps the book titles to the Acrobat format files:

Book Title File Name

Before You Install Oracle Rdb7 N/A

Oracle Rdb7 Release Notes N/A

Oracle Rdb7 Installation and Configuration Guide for OpenVMS IGVMS

Oracle Rdb7 Installation and Configuration Guide for Digital UNIX IGUNIX

Oracle Rdb7 Introduction to SQL SQLINT

Oracle Rdb7 Guide to SQL Programming GSP

Oracle Rdb7 SQL Reference Manual SQLRM

Oracle Rdb7 Guide to Database Design and Definition GDDD

Oracle Rdb7 Guide to Database Maintenance GDM

Oracle Rdb7 Guide to Database Performance and Tuning GDPT

Migrating Oracle Rdb7 Databases and Applications to OpenVMS Alpha MIGAXP

Migrating Oracle Rdb7 Databases and Applications to Digital UNIX MIGUNIX

Oracle RMU Reference Manual for OpenVMS RMURM_V

Oracle RMU Reference Manual for Digital UNIX RMURM_U

Oracle Rdb7 Guide to Distributed Transactions V6.1 DISTXN

Guide to Using the Oracle SQL/Services Client API SQLCLNT

Oracle SQL/Services Server Configuration Guide SQSCONF

Oracle SQL/Services Release Notes N/A

Oracle SQL/Services Installation Guide for OpenVMS SQSIG_V

Oracle SQL/Services Installation Guide for DigitalUNIX SQSIG_U

1–58 Information About This Release

Book Title File Name

Oracle Rdb7 and Oracle CODASYL DBMS: Guide to Hot Standby Databases HOTSTDBY

Documentation in HTML format
The documentation in HTML format is available on the Oracle Rdb CD–ROM in
the directory rdbdoc. The HTML documentation is provided in three packages to
make it easier to move the files to a location accessible by your browser:

• A saveset (rdb7html.a) for OpenVMS systems

• A tar (rdb7html.tar) file for Digital UNIX systems

• A self-extracting archive (rdb7html.exe) file for Windows NT and Windows 95
systems

To maintain the directory structure, use the -d qualifier when you run the
archive file to extract the files.

After you extract the files from the packages, see the introductory page
index.html in the top-level directory for more information about the HTML
documentation. Not all V7.0 documentation is available in HTML format.

1.15.2 Documentation for Oracle Rdb for OpenVMS
Table 1–17 lists the Oracle Rdb for OpenVMS documentation, including order
numbers.

Table 1–17 Documentation for Oracle Rdb for OpenVMS

Set or Book Title Order Number

Library Set (includes listed documentation) A48507-1

Documents Created or Revised for Oracle Rdb for OpenVMS Release 7.01

Before You Install Oracle Rdb7 for OpenVMS A42861-1

Oracle Rdb7 Release Notes None

Oracle Rdb7 Installation and Configuration Guide for OpenVMS A42342-1

Oracle Rdb7 Introduction to SQL A40827-1

Oracle Rdb7 Guide to SQL Programming A42867-1

Oracle Rdb7 SQL Reference Manual A47579-1

Oracle Rdb7 Guide to Database Design and Definition A41749-1

Oracle Rdb7 Guide to Database Maintenance A41748-1

Oracle Rdb7 Guide to Database Performance and Tuning A41747-1

Migrating Oracle Rdb7 Databases and Applications to OpenVMS Alpha A40682-1

Oracle RMU Reference Manual for OpenVMS A41741-1

Guide to Using the Oracle SQL/Services Client API A41981-1

Oracle SQL/Services Server Configuration Guide A41983-1

Oracle SQL/Services Release Notes None

1Because documentation for the Hot Standby™ option is provided separately (with the Hot Standby
license), it is not listed here.

(continued on next page)

Information About This Release 1–59

Table 1–17 (Cont.) Documentation for Oracle Rdb for OpenVMS

Set or Book Title Order Number

Documents Created or Revised for Oracle Rdb for OpenVMS Release 7.01

Oracle SQL/Services Installation Guide for OpenVMS A42343-1

Documents Created or Revised for Oracle Rdb for OpenVMS Release 6.1 and Earlier

Oracle Rdb7 Guide to Distributed Transactions A40826-1

1Because documentation for the Hot Standby™ option is provided separately (with the Hot Standby
license), it is not listed here.

Documentation for the Rdb Web Agent is available on the software media, in
HTML format.

1.15.3 Documentation for Oracle Rdb for Digital UNIX
Table 1–18 lists the Oracle Rdb for Digital UNIX documentation, including order
numbers.

Table 1–18 Documentation for Oracle Rdb for Digital UNIX

Set or Book Title Order Number

Library Set (includes listed documentation) A48656-1

Documents Created or Revised for Oracle Rdb for Digital UNIX Release 7.01

Before You Install Oracle Rdb7 for Digital UNIX A47585-1

Oracle Rdb7 Release Notes None

Oracle Rdb7 Installation and Configuration Guide for Digital UNIX A41982-1

Oracle Rdb7 Introduction to SQL A40827-1

Oracle Rdb7 Guide to SQL Programming A42867-1

Oracle Rdb7 SQL Reference Manual A47579-1

Oracle Rdb7 Guide to Database Design and Definition A41749-1

Oracle Rdb7 Guide to Database Maintenance A41748-1

Oracle Rdb7 Guide to Database Performance and Tuning A41747-1

Migrating Oracle Rdb7 Databases and Applications to Digital UNIX A40763-1

Oracle RMU Reference Manual for Digital UNIX A41746-1

Guide to Using the Oracle SQL/Services Client API A41981-1

Oracle SQL/Services Server Configuration Guide A41983-1

Oracle SQL/Services Release Notes None

Oracle SQL/Services Installation Guide for Digital UNIX A48494-1

Documents Created or Revised for Oracle Rdb Release 6.1 and Earlier

Oracle Rdb7 Guide to Distributed Transactions A40826-1

1Because documentation for the Hot Standby option is provided separately (with the Hot Standby™
license), it is not listed here.

Documentation for the Rdb Web Agent is available on the software media, in
HTML format.

1–60 Information About This Release

2
Known Problems, Restrictions, and Other

Notes

This chapter describes problems and restrictions relating to Oracle Rdb Version
7.0, and includes workarounds where appropriate. Unless otherwise noted, all
notes apply to all platforms.

2.1 Known Problems and Restrictions in All Interfaces
This section describes known problems and restrictions that affect all interfaces
for Version 7.0.

2.1.1 Reinstall V7.0 After Installing Previous Versions
Because of a change in the V7.0 Oracle Rdb and SQL image identifiers
necessitated by the sale of Rdb from Digital Equipment Corporation to Oracle
Corporation, installing a previous Oracle Rdb version on a system that already
has V7.0 installed causes many SQL files and images to be incorrectly replaced.
Because of this situation, you must reinstall V7.0 after you install any previous
version, including any Mandatory Update (MUP) kit released before June 1995.

This situation might arise if you have a system with multiple versions of Oracle
Rdb installed, one of which was V7.0, and you applied a MUP against one of the
earlier versions.

Because ECOs of previous versions install correctly, reinstalling V7.0 after
installing an ECO for a previous version ECO is not necessary.

2.1.2 Monitor ENQLM Minimum Increased to 32767

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, the Oracle Rdb monitor process (RDMMON) was created
with a minimum lock limit (ENQLM) of 8192 locks. This minimum has been
increased to 32767 locks (the OpenVMS maximum value). ♦

2.1.3 Hot Standby Database Option Does Not Support Replication on
Digital UNIX

Digital UNIX The ability to implement the Hot Standby software on a Digital UNIX system is
unsupported at this time.

Although the Oracle Rdb7 and Oracle CODASYL DBMS: Guide to Hot Standby
Databases documentation describes support on both the Digital UNIX and
OpenVMS operating systems, you can implement Hot Standby databases for
Oracle Rdb in OpenVMS environments only. ♦

Known Problems, Restrictions, and Other Notes 2–1

2.1.4 Oracle Rdb Workload Collection Can Stop Hot Standby Replication
If you are replicating your Oracle Rdb database using the Oracle Hot Standby
option, you must not use the workload collection option. By default, workload
collection is disabled. However, if you enabled workload collection, you must
disable it on the master database prior to performing a backup operation on that
master database if it will be used to create the standby database for replication
purposes. If you do not disable workload collection, it could write workload
information to the standby database and prevent replication operations from
occurring.

The workaround included at the end of this section describes how to disable
workload collection on the master database and allow the Hot Standby software
to propagate the change to the standby database automatically during replication
operations.

Background Information
By default, workload collection and cardinality collection are automatically
disabled when Hot Standby replication operations are occurring on the standby
database. However, if replication stops (even for a brief network failure), Oracle
Rdb potentially can start a read/write transaction on the standby database to
write workload collection information. Then, because the standby database is
no longer synchronized transactionally with the master database, replication
operations cannot restart.

Note

The Oracle Rdb optimizer can update workload collection information in
the RDB$WORKLOAD system table even though the standby database
is opened exclusively for read-only queries. A read/write transaction is
started during the disconnect from the standby database to flush the
workload and cardinality statistics to the system tables.

If the standby database is modified, you receive the following messages when you
try to restart Hot Standby replication operations:

%RDMS-F-DBMODIFIED, database has been modified; AIJ roll-forward not possible
%RMU-F-FATALRDB, Fatal error while accessing Oracle Rdb.

Workaround
To work around this problem, perform the following:

• On the master database, disable workload collection using the SQL clause
WORKLOAD COLLECTION IS DISABLED on the ALTER DATABASE
statement. For example:

SQL> ALTER DATABASE FILE mf_personnel
cont> WORKLOAD COLLECTION IS DISABLED;

This change is propagated to the standby database automatically when you
restore the standby database and restart replication operations. Note that,
by default, the workload collection feature is disabled. You need to disable
workload collection only if you previously enabled workload collection with
the WORKLOAD COLLECTION IS ENABLED clause.

2–2 Known Problems, Restrictions, and Other Notes

• On the standby database, include the Transaction_Mode qualifier on the RMU
Restore command when you restore the standby database. You should set
this qualifier to read-only to prevent modifications to the standby database
when replication operations are not active. The following example shows the
Transaction_Mode qualifier used in a typical RMU Restore command:

$ RMU/RESTORE /TRANSACTION_MODE=READ_ONLY
/NOCDD
/NOLOG
/ROOT=DISK1:[DIR]standby_personnel.rdb
/AIJ_OPT=aij_opt.dat
DISK1:[DIR]standby_personnel.rbf

If, in the future, you fail over processing to the standby database (so that the
standby database becomes the master database), you can reenable updates to the
‘‘new’’ master database. For example, to reenable updates, use the SQL statement
ALTER DATABASE and include the SET TRANSACTION MODES (ALL) clause.
The following example shows this statement used on the new master database:

SQL> ALTER DATABASE FILE mf_personnel
cont> SET TRANSACTION MODES (ALL);

2.1.5 Support for Vested Images

OpenVMS
VAX

OpenVMS
Alpha

Oracle Rdb V7.0 no longer supports OpenVMS VAX images translated to
OpenVMS Alpha images using the DECmigrate VEST utility. The VEST utility
translates OpenVMS VAX images by converting executable and shareable images
into functionally equivalent translated images that run on an OpenVMS Alpha
system. ♦

2.1.6 RMU Convert Command and System Tables
When the RMU Convert command converts a database from a previous version to
Oracle Rdb V7.0, it sets the RDB$CREATED and RDB$LAST_ALTERED columns
to the timestamp of the convert operation.

The RDB$xxx_CREATOR columns are set to the current user name (which is
space filled) of the converter. Here "xxx" represents the object name, such as in
RDB$TRIGGER_CREATOR.

The RMU Convert command also creates the new index on RDB$TRANSFER_
RELATIONS if the database is transfer enabled.

2.1.7 Converting Single-File Databases
Because of a substantial increase in the database root file information for V7.0,
you should ensure that you have adequate disk space before you use the RMU
Convert command with single-file databases.

The size of the database root file of any given database will increase a minimum
of 13 blocks and a maximum of 597 blocks. The actual increase depends mostly
on the maximum number of users specified for the database.

2.1.8 Converting from Versions Earlier Than V5.1
You cannot convert databases earlier than V5.1 directly to V7.0. The RMU
Convert command for V7.0 supports conversions from V5.1, V6.0, and V6.1 only.
If you have a V3.0 through V5.0 database, you must convert it to V5.1, V6.0,
or V6.1 and then convert it to V7.0. For example, if you have a V4.2 database,
convert it first to V5.1, V6.0, or V6.1. Then, convert the resulting database to
V7.0.

Known Problems, Restrictions, and Other Notes 2–3

If you attempt to convert a database created prior to V5.1 directly to V7.0, Oracle
Rdb generates an error.

2.1.9 Functionality Not Available on Digital UNIX
Digital UNIX This section describes the functionality that is not available yet on Digital UNIX.

The following functionality that affects all interfaces is not available yet on
Digital UNIX:

• The Hot Standby option

• Bounded volume sets

• The Ctrl/T keystroke sequence for statistics during a load operation

• Support for operator notification classes

This support is latent on Digital UNIX. You can specify syntax such as dump
or other operator class commands but the operator notification features does
not work on Digital UNIX.

Although this support is latent on Digital UNIX, you can restore a database
created on Digital UNIX on an OpenVMS system and operator notification
features are immediately activated.

Support for internal operator notification may be included in a future release.

• Oracle CDD/Repository

• Parallel Backup

On OpenVMS, you can specify a multiprocess RMU Backup command for
backup operations to tape, referred to as a parallel backup. This feature uses
multiple, multithreaded processes to perform a database backup. This feature
is not available on Digital UNIX.

Associated with the parallel backup operation, are the RMU Backup Plan
command and the Parallel Backup Monitor. Neither the RMU Backup
Plan command nor the Parallel Backup Monitor are supported for use with
Digital UNIX databases. The RMU Backup command provides qualifiers that
allow to you specify a parallel backup operation on OpenVMS; these qualifiers
are not valid on Digital UNIX. The qualifiers are: Execute, List_Plan, and
Parallel. Likewise, the RMU Backup Plan command and the Parallel Backup
Monitor are not available on Digital UNIX.

The following SQL functionality is not available yet on Digital UNIX:

• Some SQL precompiler languages

The SQL precompiler supports the following languages: Digital UNIX C, DEC
C for Digital UNIX, DEC COBOL for Digital UNIX, DEC Fortran, and DEC
Pascal.

Oracle Rdb does not support Ada on Digital UNIX for this release; PL/I is not
available on Digital UNIX.

• Some host languages with the SQL module processor

The SQL module processor supports Digital UNIX C, DEC C for
Digital UNIX, DEC COBOL for Digital UNIX, DEC Fortran, and DEC
Pascal host languages. Other languages are not supported for this release.

• Creating collating sequences

2–4 Known Problems, Restrictions, and Other Notes

Oracle Rdb for Digital UNIX does not support the creation of collating
sequences with SQL. You can, however, restore a database from OpenVMS
and retain the collating sequences that exist in that database. Also, if
a Digital UNIX database is altered from an OpenVMS system, collating
sequences can be created remotely. All other internationalization features are
supported.

• Support for the following logical names:

SYS$CURRENCY
SYS$DIGIT_SEP
SYS$RADIX_POINT
SYS$LANGUAGE
RDB$CHARACTER_SET
RDB$LIBRARY
RDB$ROUTINES

• Oracle7 SQL functions

The SQL functions added for compatibility with Oracle7 SQL are not available
on Digital UNIX.

• SET LANGUAGE statement

On Digital UNIX, foreign language support is provided by means of a locale
setting. See your system manager to set up locales on Digital UNIX.

• SET DATE FORMAT statement

• SET DICTIONARY statement

• SHOW DICTIONARY, SHOW DATE FORMAT, and SHOW LANGUAGE
statements

• Parameter checking

Parameter checking is not supported on Oracle Rdb for Digital UNIX.
(Parameter checking determines whether the SQL module processor compares
the number of formal parameters declared for a procedure with the number
of parameters specified in the SQL statement. On OpenVMS, you enable
parameter checking with the SQL PARAMETER_CHECK qualifier.)

The following Oracle RMU commands are not available yet on Digital UNIX:

• Backup Plan

• Set Audit

• Show Audit

The following Oracle RMU command qualifiers are not supported or are changed
for Oracle Rdb for Digital UNIX:

• Qualifiers associated with parallel backup operations:

The Execute, List_Plan, and Parallel qualifiers of the RMU Backup command
are not supported for use on Oracle Rdb for Digital UNIX.

• Qualifiers associated with security auditing:

The Audit qualifier of the RMU Load command is not supported on Oracle
Rdb for Digital UNIX.

The Security option of the Items qualifier of the RMU Extract command
is not supported on Oracle Rdb for Digital UNIX.

Known Problems, Restrictions, and Other Notes 2–5

• The following qualifiers associated with ACL editing in the RMU Set Privilege
command:

Edit

Journal

Keep

Mode

Recover

• Qualifiers associated with operator notification:

The Notify qualifier of the RMU Set After_Journal command is not
supported on Oracle Rdb for Digital UNIX.

The Notify option for the Aij_Options qualifier of the RMU Copy_
Database, Move_Area, Restore, and Restore Only_Root commands is
not supported on Oracle Rdb for Digital UNIX.

• Qualifiers associated with data dictionary support:

The Path qualifier of the RMU Close, Convert, Open, and Restore
commands is not supported on Oracle Rdb for Digital UNIX.

The Cdd_Integrate qualifier of the RMU Restore command is not
supported on Oracle Rdb for Digital UNIX.

The Nocdd_Integrate qualifier of the RMU Restore command is not
supported on Oracle Rdb for Digital UNIX.

• Qualifiers associated with VMScluster support:

The value of the Nodes_Max qualifier of the RMU Copy_Database,
Move_Area, Restore, and Restore Only_Root commands must be 1 on
Digital UNIX.

The Cluster qualifier of the RMU Close command is not supported on
Oracle Rdb for Digital UNIX.

The Nocluster qualifier of the RMU Close command is not supported on
Oracle Rdb for Digital UNIX.

• A qualifier associated with tape support:

The Density qualifier of the RMU Backup, Backup After_Journal, and
Optimize After_Journal commands is not supported on Oracle Rdb for
Digital UNIX.

• Qualifiers associated with OpenVMS processes:

The Priority qualifier of the RMU Monitor Start command is not
supported on Oracle Rdb for Digital UNIX.

The Swap qualifier of the RMU Monitor Start command is not supported
on Oracle Rdb for Digital UNIX.

• The Abort=FORCEX and Abort=DELPRC qualifiers for the RMU Close and
Monitor Stop commands

These qualifiers of the Close and Monitor Stop commands on Oracle Rdb
for OpenVMS are replaced with the Abort qualifier on Oracle Rdb for
Digital UNIX. The Abort qualifier on Oracle Rdb for Digital UNIX exhibits
behavior equivalent to the Abort=DELPRC qualifier on Oracle Rdb for

2–6 Known Problems, Restrictions, and Other Notes

OpenVMS. (You can use the Abort=FORCEX and Abort=DELPRC qualifiers
on Oracle Rdb for Digital UNIX, but both exhibit the behavior associated with
the Abort=DELPRC qualifier.)

• The Language=RDO qualifier for the RMU Extract command

There is no RDO support on Oracle Rdb for Digital UNIX.

• The Disk qualifier for the RMU Set Corrupt_Pages command

The Disk qualifier of the RMU Set Corrupt_Pages command is replaced with
the File_System=path qualifier on Oracle Rdb for Digital UNIX. When you
specify the File_System qualifier with the RMU Set Corrupt_Pages command
on Oracle Rdb for Digital UNIX, any areas with the same mount point as the
specified directory path are set as you indicate with the Corrupt or Consistent
qualifiers.

• Symbol settings

The setting of symbols by the RMU Set After_Journal, Show After_Journal,
and Show Version commands on Oracle Rdb for OpenVMS are not supported
by these commands on Oracle Rdb for Digital UNIX.

On Oracle Rdb for OpenVMS, the RMU Backup After_Journal, Set After_
Journal, and Show After_Journal commands set process global symbols. No
equivalent behavior is supported on Oracle Rdb for Digital UNIX.

In addition, the RMU Show Version command on OpenVMS sets the following
symbols: RMU$RDB_VERSION and RMU$DATABASE_VERSION. No
equivalent behavior is supported on Oracle Rdb for Digital UNIX.

Note

The names of a few Oracle RMU qualifiers have been changed in Oracle
Rdb for Digital UNIX to remove references specific to OpenVMS. For
example, the Rms_Record_Definition qualifier for Oracle Rdb for
OpenVMS has changed to the Record_Definition qualifier for Oracle
Rdb for Digital UNIX. However, an application migrated from OpenVMS
to Digital UNIX that contains one of these qualifiers need not be changed.
Oracle RMU on Digital UNIX recognizes the OpenVMS qualifiers unless
otherwise noted in this section. (Likewise, Oracle RMU for OpenVMS
recognizes the Oracle Rdb for Digital UNIX qualifiers.)

♦

2.1.10 Record Caches and Exclusive Access
If a table has a row-level cache defined for it, the Record Cache Server (RCS) may
acquire a shared lock on the table and prevent any other user from acquiring a
Protective or Exclusive lock on that table.

2.1.11 Strict Partitioning May Scan Extra Partitions
When you use a WHERE clause with the less than (<) or greater than (>)
operator and a value that is the same as the boundary value of a storage map,
Oracle Rdb scans extra partitions. A boundary value is a value specified in the
WITH LIMIT OF clause. The following example, executed while the logical name
RDMS$DEBUG_FLAGS is defined as ‘‘S’’, illustrates the behavior:

Known Problems, Restrictions, and Other Notes 2–7

ATTACH ’FILENAME MF_PERSONNEL’;
CREATE TABLE T1 (ID INTEGER, LAST_NAME CHAR(12), FIRST_NAME CHAR(12));
CREATE STORAGE MAP M FOR T1 PARTITIONING NOT UPDATABLE
STORE USING (ID)
IN EMPIDS_LOW WITH LIMIT OF (200)
IN EMPIDS_MID WITH LIMIT OF (400)
OTHERWISE IN EMPIDS_OVER;
INSERT INTO T1 VALUES (150,’Boney’,’MaryJean’);
INSERT INTO T1 VALUES (350,’Morley’,’Steven’);
INSERT INTO T1 VALUES (300,’Martinez’,’Nancy’);
INSERT INTO T1 VALUES (450,’Gentile’,’Russ’);

SELECT * FROM T1 WHERE ID > 400;
Conjunct Get Retrieval sequentially of relation T1
Strict Partitioning: part 2 3

ID LAST_NAME FIRST_NAME
450 Gentile Russ

1 row selected

In the previous example, partition 2 does not need to be scanned.

This does not affect the correctness of the result. Users can avoid the extra scan
by using values other than the boundary values. For example:

SQL> SELECT * FROM T1 WHERE ID >= 401;
Conjunct Get Retrieval sequentially of relation T1
Strict Partitioning: part 3

ID LAST_NAME FIRST_NAME
450 Gentile Russ

1 row selected

2.1.12 Restriction When Adding Storage Areas with Users Attached to
Database

If you try to interactively add a new storage area where the page size is less than
the existing page size and the database has been manually opened or users are
active, the add operation fails with the following error:

%RDB-F-SYS_REQUEST, error from system services request
-RDMS-F-FILACCERR, error opening database root DKA0:[RDB]TEST.RDB;1
-SYSTEM-W-ACCONFLICT, file access conflict

You can make this change only when no users are attached to the database and,
if the database is set to OPEN IS MANUAL, the database is closed. The reason
for this restriction is that several internal Oracle Rdb data structures are based
on the minimum page size and these structures cannot be resized if there are
users attached to the database. Furthermore, because this particular change is
not recorded in the AIJ, any recovery scenario will fail.

Note also that if you use .aij files, you must backup the database and restart
after-image journaling because this change invalidates the current AIJ recovery.

2.2 SQL Known Problems and Restrictions
This section describes known problems and restrictions for the SQL interface for
Version 7.0.

2–8 Known Problems, Restrictions, and Other Notes

2.2.1 Behavior of Journaling Using IMPORT
The IMPORT statement does not let you restore original journal settings.
Because IMPORT disables journaling, FAST COMMIT is disabled. Thus, the
resulting database is not in its original state.

Oracle Rdb does not let you enable after-image journaling with the CREATE
DATABASE statement. Because the IMPORT statement shares a common code
path with the CREATE DATABASE statement, the after-image journal attributes
cannot be imported. Therefore, the after-image journal attributes are disabled
after IMPORT, inherently implying that FAST COMMIT is also disabled.

This restriction will be investigated for a future release.

You can use the following workaround:

Before exporting the database, use the following RMU Extract command to
generate a script of the after-image journal definition. After the database is
exported and imported, run the script to re-create the original after-image journal
settings:

$ RMU/EXTRACT/ITEM=ALTER_DATABASE/OUTPUT=ADD_AIJ.SQL yourdatabase

2.2.2 Cannot Alter a Storage Map That Is Vertically Partitioned
You cannot alter a storage map that is vertically partitioned; you cannot modify a
storage map that is not partitioned vertically to one that is partitioned vertically.

The following example shows the error message that Oracle Rdb returns:

SQL> ALTER STORAGE MAP T_MAP ENABLE COMPRESSION;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-WISH_LIST, feature not implemented yet
-RDMS-E-VRPINVALID, invalid operation for storage map "T_MAP"

This restriction may be lifted in a future version of Oracle Rdb. Currently, the
recommended method of altering the storage map is to unload and load the table.

2.2.3 SQL Does Not Display Storage Map Definition After Cascading Delete of
Storage Area

When you drop a storage area using the CASCADE keyword and that storage
area is not the only area to which the storeage map refers, the SHOW STORAGE
MAP statement no longer shows the placement definition for that storage map.

The following example demonstrates this restriction:

SQL> SHOW STORAGE MAP DEGREES_MAP1
DEGREES_MAP1

For Table: DEGREES1
Compression is: ENABLED
Partitioning is: NOT UPDATABLE
Store clause: STORE USING (EMPLOYEE_ID)

IN DEG_AREA WITH LIMIT OF (’00250’)
OTHERWISE IN DEG_AREA2

Known Problems, Restrictions, and Other Notes 2–9

SQL> DISCONNECT DEFAULT;
SQL> -- Drop the storage area, using the CASCADE keyword.
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> DROP STORAGE AREA DEG_AREA CASCADE;
SQL> --
SQL> -- Display the storage map definition.
SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> SHOW STORAGE MAP DEGREES_MAP1

DEGREES_MAP1
For Table: DEGREES1
Compression is: ENABLED
Partitioning is: NOT UPDATABLE

SQL>

The other storage area, DEG_AREA2, still exists, even though the SHOW
STORAGE MAP statement does not display it.

A workaround is to use the RMU Extract command with the Items=Storage_Map
qualifier to see the mapping.

2.2.4 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE CASE
When you use LIKE . . . IGNORE CASE, programs linked under Oracle Rdb V4.2
and V5.1, but run under higher versions of Oracle Rdb, may result in incorrect
results or %RDB-E-ARITH_EXCEPT exceptions.

To work around the problem, avoid using IGNORE CASE with LIKE or recompile
and relink under a higher version (V6.0 or higher.)

2.2.5 Different Methods of Limiting Returned Rows From Queries
You can establish the query governor for rows returned from a query by using
either the SQL SET QUERY LIMIT statement or a logical name or configuration
parameter. This note describes the differences between the two mechanism.

• If you define the RDMS$BIND_QG_REC_LIMIT logical name or RDB_BIND_
QG_REC_LIMIT configuration parameter to a small value, the query will
often fail with no rows returned regardless of the value assigned to the
logical. The following example demonstrates setting the limit to 10 rows and
the resulting failure:

$ DEFINE RDMS$BIND_QG_REC_LIMIT 10
$ SQL$
SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
%RDB-F-EXQUOTA, Oracle Rdb runtime quota exceeded
-RDMS-E-MAXRECLIM, query governor maximum limit of rows has been reached

Interactive SQL must load its metadata cache for the table before it can
process the SELECT statement. In this example, interactive SQL loads
its metadata cache to allow it to check that the column EMPLOYEE_ID
really exists for the table. The queries on the Oracle Rdb system tables
RDB$RELATIONS and RDB$RELATION_FIELDS exceed the limit of rows.

Oracle Rdb does not prepare the SELECT statement, let alone execute it.
Raising the limit to a number less than 100 (the cardinality of EMPLOYEES)
but more than the number of columns in EMPLOYEES (that is, the number
of rows to read from the RDB$RELATION_FIELDS system table) is sufficient
to read each column definition.

To see an indication of the queries executed against the system tables, define
the RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_FLAGS
configuration parameter as "S" or "B".

2–10 Known Problems, Restrictions, and Other Notes

• If you set the row limit using the SQL SET QUERY statement and run the
same query, it returns the number of rows specified by the SQL SET QUERY
statement before failing:

SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> SET QUERY LIMIT ROWS 10;
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
EMPLOYEE_ID
00164
00165

.

.

.
00173
%RDB-E-EXQUOTA, Oracle Rdb runtime quota exceeded
-RDMS-E-MAXRECLIM, query governor maximum limit of rows has been reached

The SET QUERY LIMIT specifies that only user queries be limited to 10 rows.
Therefore, the queries used to load the metadata cache are not restricted in
any way.

Like the SET QUERY LIMIT statement, the SQL precompiler and
module processor command line qualifiers (QUERY_MAX_ROWS and
SQLOPTIONS=QUERY_MAX_ROWS) only limit user queries.

Keep the differences in mind when limiting returned rows using the logical name
RDMS$BIND_QG_REC_LIMIT or the configuration parameter RDB_BIND_QG_
REC_LIMIT. They may limit more queries than are obvious. This is important
when using 4GL tools, the SQL precompiler, the SQL module processor, and other
interfaces that read the Oracle Rdb system tables as part of query processing.

2.2.6 Suggestions for Optimal Usage of SHARED DATA DEFINITION Clause for
Parallel Index Creation

The CREATE INDEX process involves the following steps:

1. Process the metadata.

2. Lock the index name.

Because new metadata (which includes the index name) is not written to
disk until the end of the index process, Oracle Rdb must ensure index name
uniqueness across the database during this time by taking a special lock on
the provided index name. (See Section 2.2.7 for more information about index
names.)

3. Read the table for sorting by selected index columns and ordering.

4. Sort the key data.

5. Build the index (includes partitioning across storage areas).

6. Write new metadata to disk.

Step 6 is the point of conflict with other index definers because the system table
and indexes are locked like any other updated table.

Multiple users can create indexes on the same table by using the RESERVING
table_name FOR SHARED DATA DEFINITION clause of the SET
TRANSACTION statement. For optimal usage of this capability, Oracle Rdb
suggests the following guidelines:

Known Problems, Restrictions, and Other Notes 2–11

• You should commit the transaction immediately after the CREATE INDEX
statement so that locks on the table are released. This avoids lock conflicts
with other index definers and improves overall concurrency.

• By assigning the location of the temporary sort work files SORTWORK0,
SORTWORK1, . . . , SORTWORK9 to different disks for each parallel process
that issues the SHARED DATA DEFINITION statement, you can increase the
efficiency of sort operations. This minimizes any possible disk I/O bottlenecks
and allows overlap of the SORT read/write cycle.

• If possible, enable global buffers and specify a buffer number large enough to
hold a sufficient amount of table data. However, do not define global buffers
larger than the available system physical memory. Global buffers allow
sharing of database pages and thus result in disk I/O savings. That is, pages
are read from disk by one of the processes and then shared by the other index
definers for the same table, reducing the I/O load on the table.

• If global buffers are not used, ensure that enough local buffers exist to keep
much of the index cached (use the RDM$BIND_BUFFERS logical name
or RDB_BIND_BUFFERS configuration parameter or the NUMBER OF
BUFFERS IS clause in SQL to change the number of buffers).

• To distribute the disk I/O load, store the storage areas for the indexes on
separate disk drives. Note that using the same storage area for multiple
indexes will result in contention during the index creation (Step 5) for SPAM
pages.

• Consider placing the .ruj file for each parallel definer on its own disk or an
infrequently used disk.

• Even though snapshot I/O should be minimal, consider disabling snapshots
during parallel index creation.

• Refer to the Oracle Rdb7 Guide to Database Performance and Tuning to
determine the appropriate working set values for each process to minimize
excessive paging activity. In particular, avoid using working set parameters
where the difference between WSQUOTA and WSEXTENT is large. The
SORT utility uses the difference between these two values to allocate scratch
virtual memory. A large difference (that is, the requested virtual memory
grossly exceeds the available physical memory) may lead to excessive page
faulting.

• The performance benefits of using SHARED DATA DEFINITION can best
be observed when creating many indexes in parallel. The benefit is in the
average elapsed time, not in CPU or I/O usage. For example, when two
indexes are created in parallel using the SHARED DATA DEFINITION
clause, the database must be attached twice, and the two attaches each use
separate system resources.

• Using the SHARED DATA DEFINITION clause on a single-file database or
for indexes defined in the RDB$SYSTEM storage area is not recommended.

The following table displays the elapsed time benefit when creating multiple
indexes in parallel with the SHARED DATA DEFINITION clause. The
table shows the elapsed time for ten parallel process index creations (Index1,
Index2, . . . Index10) and one process with ten sequential index creations (All10).
In this example, global buffers are enabled and the number of buffers is 500.
The longest time for a parallel index creation is Index7 with an elapsed time of
00:02:34.64, compared to creating ten indexes sequentially with an elapsed time

2–12 Known Problems, Restrictions, and Other Notes

of 00:03:26.66. The longest single parallel create index elapsed time is shorter
than the elapsed time of creating all ten of the indexes serially.

Index Create Job Elapsed Time

Index1 00:02:22.50

Index2 00:01:57.94

Index3 00:02:06.27

Index4 00:01:34.53

Index5 00:01:51.96

Index6 00:01:27.57

Index7 00:02:34.64

Index8 00:01:40.56

Index9 00:01:34.43

Index10 00:01:47.44

All10 00:03:26.66

2.2.7 %SQL-F-IND_EXISTS During Concurrent Index Definition
During concurrent index creation, Oracle Rdb validates only the first 27 bytes of
the index name. Therefore, these bytes must be unique. After the index creation
is complete, Oracle Rdb uses the full index name. This restriction happens only
when multiple index definitions are in progress.

To permit concurrent index definitions, Oracle Rdb takes out a special lock on the
provided index name. The lock manager allows 31 bytes for lock names, however
Oracle Rdb needs 4 bytes for database context, thus leaving only 27 bytes to keep
the index names unique. Therefore, index names must be unique to 27 bytes
when you create indexes concurrently.

The following example demonstrates this problem:

Session 1:
SQL> CREATE INDEX EMP_DAILY_SALES_SUMRY_SORTED_2
cont> ON EMPLOYEES (ADDRESS_DATA_2);

Session 2:
SQL> CREATE INDEX EMP_DAILY_SALES_SUMRY_SORTED_1
cont> ON EMPLOYEES (ADDRESS_DATA_1);
%SQL-F-IND_EXISTS, Index EMP_DAILY_SALES_SUMRY_SORTED_1 already exists in this
database or schema

2.2.8 Side Effect When Calling Stored Routines
When calling a stored routine, you must not use the same routine to calculate
argument values by a stored function. For example, if the routine being called
is also called by a stored function during the calculation of an argument value,
passed arguments to the routine may be incorrect.

The following example shows a stored procedure P being called during the
calculation of the arguments for another invocation of the stored procedure P:

Known Problems, Restrictions, and Other Notes 2–13

SQL> create module M
cont> lang SQL
cont>
cont> procedure P (in :a integer, in :b integer, out :c integer);
cont> begin
cont> set :c = :a + :b;
cont> end;
cont>
cont> function F () returns integer
cont> comment is ’expect F to always return 2’;
cont> begin
cont> declare :b integer;
cont> call P (1, 1, :b);
cont> trace ’returning ’, :b;
cont> return :b;
cont> end;
cont> end module;
SQL>
SQL> set flags ’TRACE’;
SQL> begin
cont> declare :cc integer;
cont> call P (2, F(), :cc);
cont> trace ’Expected 4, got ’, :cc;
cont> end;
~Xt: returning 2
~Xt: Expected 4, got 3

The result as shown above is incorrect. The routine argument values are written
to the called routine’s parameter area before complex expression values are
calculated. These calculations may (as in the example) overwrite previously
copied data.

The workaround is to assign the argument expression (in this example calling the
stored function F) to a temporary variable and pass this variable as the input for
the routine. The following example shows the workaround:

SQL> begin
cont> declare :bb, :cc integer;
cont> set :bb = F();
cont> call P (2, :bb, :cc);
cont> trace ’Expected 4, got ’, :cc;
cont> end;
~Xt: returning 2
~Xt: Expected 4, got 4

This problem will be corrected in a future version of Oracle Rdb.

2.2.9 Incorrect Processing of Subquery When Nested in FOR Cursor Loop
A subquery may return incorrect results when it appears in a SET statement
nested within a FOR cursor loop and this subquery refers to local variables
initialized inside the FOR cursor loop.

This problem is due to an optimization which pulls the subquery evaluation into
the FOR cursor loop’s own query, thereby evaluating it before the local variables
(or parameters) have been initialized.

The following example shows the problem:

2–14 Known Problems, Restrictions, and Other Notes

SQL> set flags ’TRACE’;
SQL>
SQL> begin
cont> declare :id char(5);
cont> declare :sal integer(2);
cont>
cont> for :emp as
cont> select last_name, employee_id
cont> from employees
cont> where employee_id = ’00164’
cont> do
cont> set :id = :emp.employee_id;
cont> set :sal = (select salary_amount
cont> from salary_history
cont> where employee_id = :id
cont> and salary_end is null);
cont> trace ’Employee: ’, :id, ’, Salary: ’, :sal;
cont> end for;
cont> end;
~Xt: Employee: 00164, Salary: 0.00

The salary should not be zero. This incorrect value is returned because the
subquery requires the local variable ID, which is assigned a value within the
FOR loop prior to the subquery. However, this assignment to ID is performed
after the subquery has been evaluated.

A workaround is to reference the FOR loop columns directly using the cursors
handle, rather than taking copies before the subquery is executed.

SQL> begin
cont> declare :id char(5);
cont> declare :sal integer(2);
cont>
cont> for :emp as
cont> select last_name, employee_id
cont> from employees
cont> where employee_id = ’00164’
cont> do
cont> set :id = :emp.employee_id;
cont> set :sal = (select salary_amount
cont> from salary_history
cont> where employee_id = :emp.employee_id
cont> and salary_end is null);
cont> trace ’Employee: ’, :id, ’, Salary: ’, :sal;
cont> end for;
cont> end;
~Xt: Employee: 00164, Salary: 51712.00

The correct result is returned when you use the FOR loop handle and a direct
column reference.

This problem will be corrected in a future version of Oracle Rdb.

2.2.10 Nested Correlated Subquery Outer References Incorrect
Outer references from aggregation subqueries contained within nested queries
could receive incorrect values, causing the overall query to return incorrect
results. The general symptom for an outer query that returned rows 1 to n was
that the inner aggregation query would operate with the nth - 1 row data (usually
NULL for row 1) when it should have been using the nth row data.

This problem has existed in various forms for all previous versions of Oracle Rdb,
but only appears in V6.1 and later when the inner of the nested queries contains
an UPDATE statement.

Known Problems, Restrictions, and Other Notes 2–15

The following example demonstrates the problem:

SQL> attach ’filename shipping’;
SQL> select * from manifest where voyage_num = 4904 or
cont> voyage_num = 4909;
VOYAGE_NUM EXP_NUM MATERIAL TONNAGE

4904 311 CEDAR 1200
4904 311 FIR 690
4909 291 IRON ORE 3000
4909 350 BAUXITE 1100
4909 350 COPPER 1200
4909 355 MANGANESE 550
4909 355 TIN 500

7 rows selected
SQL> begin
cont> for :a as each row of
cont> select * from voyage v where v.ship_name = ’SANDRA C.’ or
cont> v.ship_name = ’DAFFODIL’ do
cont> for :b as each row of table cursor modcur1 for
cont> select * from manifest m where m.voyage_num = :a.voyage_num do
cont> update manifest
cont> set tonnage = (select (avg (m1.exp_num) *3) from manifest m1
cont> where m1.voyage_num = :a.voyage_num)
cont> where current of modcur1;
cont> end for;
cont> end for;
cont> end;
SQL> select * from manifest where voyage_num = 4904 or
cont> voyage_num = 4909;
VOYAGE_NUM EXP_NUM MATERIAL TONNAGE

4904 311 CEDAR NULL
4904 311 FIR NULL
4909 291 IRON ORE 933
4909 350 BAUXITE 933
4909 350 COPPER 933
4909 355 MANGANESE 933
4909 355 TIN 933

7 rows selected

The correct value for TONNAGE on both rows for VOYAGE_NUM 4904 (outer
query row 1) is: AVG (311 + 311) *3 = 933. However, Oracle Rdb calculates it
as: AVG (NULL + NULL) *3 = NULL. In addition, the TONNAGE value for
VOYAGE_NUM 4909 (outer query row 2) is actually the TONNAGE value for
outer query row 1.

A workaround is to declare a variable of the same type as the outer reference
data item, assign the outer reference data into the variable before the inner query
that contains the correlated aggregation subquery, and reference the variable
in the aggregation subquery. Keep in mind the restriction on the use of local
variables in FOR cursor loops described by Section 2.2.9.

For example:

2–16 Known Problems, Restrictions, and Other Notes

SQL> declare :vn integer;
SQL> begin
cont> for :a as each row of
cont> select * from voyage v where v.ship_name = ’SANDRA C.’ do
cont> set :vn = :a.voyage_num;
cont> for :b as each row of table cursor modcur1 for
cont> select * from manifest m where m.voyage_num = :a.voyage_num do
cont> update manifest
cont> set tonnage = (select (avg (m1.exp_num) *3) from manifest m1
cont> where m1.voyage_num = :vn)
cont> where current of modcur1;
cont> end for;
cont> end for;
cont> end;
SQL> select * from manifest where voyage_num = 4904;
VOYAGE_NUM EXP_NUM MATERIAL TONNAGE

4904 311 CEDAR 933
4904 311 FIR 933

This problem will be corrected in a future release of Oracle Rdb.

2.2.11 Additional Usage Notes for Holdable Cursors
If your applications use holdable cursors, be aware that after a COMMIT or
ROLLBACK statement is executed, the result set selected by the cursor may
not remain stable. That is, rows may be inserted, updated, and deleted by other
users because no locks are held on the rows selected by the holdable cursor after
a commit or rollback occurs. Moreover, depending on the access strategy, rows not
yet fetched may change before Oracle Rdb actually fetches them.

As a result, you may see the following anomalies when using holdable cursors in
a concurrent user environment:

• If the access strategy forces Oracle Rdb to take a data snapshot, the data
read and cached may be stale by the time the cursor fetches the data.

For example, user 1 opens a cursor (assume that the data is sorted) and
commits the transaction. User 2 deletes rows read by user 1 (this is possible
because the read locks are released). It is possible for user 1 to report data
now deleted and committed.

• If the access strategy uses indexes that allow duplicates, updates to the
duplicates chain may cause rows to be skipped, or even revisited.

For example, Oracle Rdb keeps track of the dbkey in the duplicate chain
pointing to the data that was fetched. However, the duplicates chain could be
revised by the time Oracle Rdb returns to using it.

Holdable cursors are a very powerful feature for read-only or predominantly read-
only environments. However, in concurrent update environments, the instability
of the cursor may not be acceptable. The stability of holdable cursors for update
environments will be addressed in future versions of Oracle Rdb.

You can define the logical name RDMS$BIND_HOLD_CURSOR_SNAP or
configuration parameter RDB_BIND_HOLD_CURSOR_SNAP to the value 1 to
force all hold cursors to fetch the result set into a cached data area. (The cached
data area appears as a ‘‘Temporary Relation’’ in the optimizer strategy displayed
by the SET FLAGS ’STRATEGY’ statement or the RDMS$DEBUG_FLAGS "S"
flag.) This logical name or configuration parameter helps to stabilize the cursor
to some degree.

Known Problems, Restrictions, and Other Notes 2–17

2.3 Oracle RMU Known Problems and Restrictions
This section describes known problems and restrictions for the RMU interface for
Version 7.0.

2.3.1 Default for RMU Checksum and CRC Qualifiers Changing in Future
Release

The default behavior for the Checksum_Verification and Crc qualifiers for the
following RMU commands will be changed in a future release of Oracle Rdb:

• Backup

• Backup After_Journal

• Backup Plan

• Optimize After_Journal

Currently, the default value for the CRC qualifier is Crc=Autodin_II for NRZ
/PE (800/1600 bits/inch) tape drives; Crc=Checksum is the default for GCR
(6250 bits/inch) tape drives and for TA78, TA79, and TA81 tape drives; and Nocrc
is the default for TA90 (IBM 3480 class) drives. In a future release, the default
value for the CRC qualifier will be Crc=Checksum for all tape drives except
NRZ/PE (800/1600 bits/inch) tape drives. The default qualifier for the NRZ/PE
(800/1600 bits/inch) tape drives will remain Crc=Autodin_II. The Crc=Checksum
qualifier verifies the checksum on each buffer of data before it is written to tape
or disk. This provides end-to-end error detection for the backup file I/O.

Currently, for the Backup commands shown in the previous list, the default
value for the Checksum_Verification qualifier is Nochecksum_Verification.
In a future release, the default qualifier will be Checksum_Verification. The
Checksum_Verification qualifier requests that the Oracle RMU command verify
the checksum stored on each database page before the Oracle RMU backup
operation is applied, thereby providing end-to-end error detection on the database
I/O.

Oracle Corporation recommends that you accept the new default behaviors for
your applications. They prevent you from including corrupt database pages in
backup files and optimized .aij files. Without the checksum verifications, corrupt
data pages in these files will not be detected when the files are restored. The
corruptions on the restored page may not be detected until weeks or months after
the backup file is created, or it is possible the corruption may not be detected at
all.

However, if you require the behavior of the Nocrc or Nochecksum_Verification
qualifiers and are willing to risk the undetected corruptions, this advance notice
is given so that you can prepare for the change in the default behavior.

2.3.2 Performance Monitor Collection Cells Are Reused
Previous obsolete collection cells used in the Performance Monitor are reused in
V7.0. As a result, repository definitions of the global sections from versions prior
to V7.0 are usable, but not necessarily correct for V7.0.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, to avoid problems, especially if you use an alternative
application to display statistics, execute the SYS$LIBRARY:RMU$SHOW_
STATISTICSnn.CDO command procedure after you convert to V7.0. ♦

2–18 Known Problems, Restrictions, and Other Notes

2.3.3 Collect Optimizer Statistics After Converting a Database to V7.0
Oracle Corporation recommends that you execute an RMU Collect Optimizer_
Statistics Command after you convert an Oracle Rdb database to V7.0.

Prior to this release, Oracle Rdb maintained cardinalities for tables and indexes;
multisegment sorted index prefix cardinalities were not collected. In addition,
the stored cardinality values could differ from the actual cardinality values if the
RDB$SYSTEM storage area had been set to read-only access.

When you convert an Oracle Rdb database to V7.0, cardinalities currently stored
for tables and indexes are retained for the converted database. In addition, the
RMU Convert command estimates the prefix cardinalities for each multisegment
sorted index.

By issuing the RMU Collect Optimizer_Statistics command after converting a
database to Oracle Rdb V7.0, you ensure that the table and index cardinality
values your converted database uses are accurate. Inaccurate cardinality values
can result in poor query performance.

The following example shows the command to use after converting a database
if the database being converted has the RDB$SYSTEM storage area set to
read-only:

$ RMU/COLLECT OPTIMIZER_STATISTICS/CARDINALITY my_db.rdb

The following example shows the command to use after converting a database if
the RDB$SYSTEM storage area is not set to read-only. In this example, only the
prefix cardinalities are updated from estimated to actual values. The cardinalities
of table and non-multisegement sorted indexes are not updated:

$ RMU/COLLECT OPTIMIZER_STATISTICS/CARDINALITY -
_$ /INDEX=(multisegement-index-name-list)/NOTABLE my_db.rdb

The syntax shown in the second example results in a quicker RMU Collect
Optimizer_Statistics operation.

See the Oracle RMU Reference Manual for a complete description of the RMU
Collect Optimizer_Statistics command.

2.3.4 RMU Parallel Backup Command Not Supported for Use with SLS

OpenVMS
VAX

OpenVMS
Alpha

The RMU Parallel Backup command is not supported for use with the Storage
Library System (SLS) for OpenVMS. ♦

2.3.5 RMUwin, Rdb Performance Monitor Limit Motif Support
RMUwin and the Oracle Rdb Performance Monitor for Oracle Rdb V7.0 do not
support the DECwindows Motif software interface. Oracle Rdb V7.0 supports
these tools only on windows software interfaces. (See Section 1.5.3 for more
information about the V7.0 windows support.) However, you can continue to
use the Motif interface to RMUwin and the Oracle Rdb Performance Monitor to
access Oracle Rdb V6.1 databases.

For example, if you have the multiversion variant of V6.1 installed, you can
continue to use the Motif interfaces of RMUwin and the Performance Monitor
against V6.1 databases. However, if you install standard Oracle Rdb V7.0, you
will no longer be able to use these Motif interfaces.

Known Problems, Restrictions, and Other Notes 2–19

2.4 Known Problems and Restrictions in All Interfaces for Version
6.1 and Earlier

The following problems and restrictions from Version 6.1 and earlier still exist.

2.4.1 Restriction on Tape Usage for Digital UNIX V3.2
Digital UNIX You can experience a problem where you are unable to use multiple tapes with

the Oracle RMU Backup command with Digital UNIX V3.2. Every attempt to
recover fails. If this happens and device errors are logged in the system error log,
you may have encountered the following situation:

If an error is detected by Digital UNIX during the open operation of the tape
device, it is possible that the operation succeeded but the device open reference
count is zeroed out. This means that any attempt to use the drive by the process
holding the open file descriptor will fail with EINVAL status but another process
will be able to open and use the drive even while the first process has it opened.

There is no workaround for this problem. This problem with the magtape driver
will be corrected in a future release of Digital UNIX. ♦

2.4.2 Support for Single-File Databases to Be Dropped in a Future Release
Oracle Rdb currently supports both single-file and multifile databases on both
OpenVMS and Digital UNIX. However, single-file databases will not be supported
in a future release of Oracle Rdb. At that time, Oracle Rdb will provide the
means to easily convert single-file databases to multifile databases.

Oracle Rdb recommends that users with single-file databases perform the
following actions:

• Use the Oracle RMU commands, such as Backup and Restore, to make
copies, backup, or move single-file databases. Do not use operating system
commands to copy, back up, or move databases.

• Create new databases as multifile databases even though single-file databases
are supported in Oracle Rdb V6.1 and V7.0.

2.4.3 DECdtm Log Stalls

OpenVMS
VAX

OpenVMS
Alpha

Resource managers using the DECdtm services sometimes suddenly stop being
able to commit transactions. The systems have been running fine for some
period of time, but suddenly they stop. If Oracle Rdb is installed and trying to
run transactions, an RMU Show command on the affected database will show
transactions as being "stalled, waiting to commit".

Refer to the DECdtm documentation and release notes for information on
symptoms, fixes, and workarounds to this problem. One workaround, for
OpenVMS V5.5-x, is provided here.

On the affected node, and while the log stall is in progress, perform the following
command from a privileged account:

$ MCR LMCP SET NOTIMEZONE

This should force the log to restart.

This stall occurs only when a particular bit in a pointer field becomes set. To
see the value of the pointer field, enter the following command from a privileged
account (where <nodename> is the SCS node name of the node in question).

$ MCR LMCP DUMP/ACTIVE/NOFORM SYSTEM$<nodename>

2–20 Known Problems, Restrictions, and Other Notes

This command displays output similar to the following:

Dump of transaction log SYS$COMMON:[SYSEXE]SYSTEM$<nodename>.LM$JOURNAL;1
End of file block 4002 / Allocated 4002
Log Version 1.0
Transaction log UID: 29551FC0-CBB7-11CC-8001-AA000400B7A5
Penultimate Checkpoint: 000013FD4479 0079
Last Checkpoint: 000013FDFC84 0084

Total of 2 transactions active, 0 prepared and 2 committed.

The stall will occur when bit 31 of the checkpoint address becomes set, as this
excerpt from the previous example shows:

Last Checkpoint: 000013FDFC84 0084
^
|

When the number indicated in the example becomes 8, the log will stall. Check
this number and observe how quickly it grows. When it is at 7FFF, frequently
use the following command:

$ MCR LMCP SHOW LOG /CURRENT

If this command shows a stall in progress, use the workaround to restart the log.

See your Digital representative for information about patches to DECdtm. ♦

2.4.4 You Cannot Run Distributed Transactions on Systems with DECnet/OSI
and OpenVMS Alpha Version 6.1 or OpenVMS VAX Version 6.0

OpenVMS
VAX

OpenVMS
Alpha

If you have DECnet/OSI installed on a system with OpenVMS Alpha Version 6.1
or OpenVMS VAX Version 6.0, you cannot run Oracle Rdb operations that require
the two-phase commit protocol. The two-phase commit protocol guarantees that
if one operation in a distributed transaction cannot be completed, none of the
operations is completed.

If you have DECnet/OSI installed on a system running OpenVMS VAX Version 6.1
or higher or OpenVMS Alpha V6.2 or higher, you can run Oracle Rdb operations
that require the two-phase commit protocol.

For more information about the two-phase commit protocol, see the Oracle Rdb7
Guide to Distributed Transactions. ♦

2.4.5 Multiblock Page Writes May Require Restore Operation

OpenVMS
VAX

OpenVMS
Alpha

If a node fails while a multiblock page is being written to disk, the page in
the disk becomes inconsistent, and is detected immediately during failover.
(Failover is the recovery of an application by restarting it on another computer.)
The problem is rare, and occurs because only single-block I/O operations are
guaranteed by OpenVMS to be written atomically. This problem has never been
reported by any customer and was detected only during stress tests in our labs.

Correct the page by an area-level restore operation. Database integrity is
not compromised, but the affected area will not be available until the restore
operation completes.

A future release of Oracle Rdb will provide a solution that guarantees multiblock
atomic write operations. Cluster failovers will automatically cause the recovery of
multiblock pages, and no manual intervention will be required. ♦

Known Problems, Restrictions, and Other Notes 2–21

2.4.6 Oracle Rdb Network Link Failure Does Not Allow DISCONNECT to Clean
Up Transactions

If a program attaches to a database on a remote node and it loses the connection
before the COMMIT statement is issued, there is nothing you can do except exit
the program and start again.

The problem occurs when a program is connected to a remote database and
updates the database, but then just before it commits, the network fails. When
the commit executes, SQL shows, as it normally should, that the program has
lost the link. Assume that the user waits for a minute or two, then tries the
transaction again. The problem is that when the start transaction is issued for
the second time, it fails because old information still exists about the previous
failed transaction. This occurs even if the user issues a DISCONNECT statement
(in V4.1 and earlier, a FINISH statement), which also fails with an RDB-E-IO_
ERROR error message.

2.4.7 Replication Option Copy Processes Do Not Process Database Pages
Ahead of an Application

OpenVMS
VAX

OpenVMS
Alpha

When a group of copy processes initiated by the Replication Option (formerly
Data Distributor) begins running after an application has begun modifying the
database, the copy processes will catch up to the application and will not be
able to process database pages that are logically ahead of the application in
the RDB$CHANGES system table. The copy processes all align waiting for the
same database page and do not move on until the application has released it.
The performance of each copy process degrades because it is being paced by the
application.

When a copy process completes updates to its respective remote database,
it updates the RDB$TRANSFERS system table and then tries to delete any
RDB$CHANGES rows not needed by any transfers. During this process, the
RDB$CHANGES table cannot be updated by any application process, holding
up any database updates until the deletion process is complete. The application
stalls while waiting for the RDB$CHANGES table. The resulting contention
for RDB$CHANGES SPAM pages and data pages severely impacts performance
throughput, requiring user intervention with normal processing.

This is a known restriction in V4.0 and higher. Oracle Rdb uses page locks as
latches. These latches are held only for the duration of an action on the page and
not to the end of transaction. The page locks also have blocking asynchronous
system traps (ASTs) associated with them. Therefore, whenever a process
requests a page lock, the process holding that page lock is sent a blocking AST
(BlAST) by OpenVMS. The process that receives such a blocking AST queues the
fact that the page lock should be released as soon as possible. However, the page
lock cannot be released immediately.

Such work requests to release page locks are handled at verb commit time.
An Oracle Rdb verb is an Oracle Rdb query that executes atomically, within a
transaction. Therefore, verbs that require the scan of a large table, for example,
can be quite long. An updating application does not release page locks until its
verb has completed.

The reasons for holding on to the page locks until the end of the verb are
fundamental to the database management system.

This condition is being investigated further in a future release of Oracle Rdb. ♦

2–22 Known Problems, Restrictions, and Other Notes

2.5 SQL Known Problems and Restrictions for Oracle Rdb Version
6.1 and Earlier

The following problems and restrictions from Oracle Rdb Version 6.1 and earlier
still exist.

2.5.1 INCLUDE SQLDA2 Statement Is Not Supported for SQL Precompiler for
PL/I in Oracle Rdb V5.0 or Higher

OpenVMS
VAX

OpenVMS
Alpha

The SQL statement INCLUDE SQLDA2 is not supported for use with the PL/I
precompiler in Oracle Rdb V5.0 or higher.

There is no workaround. This problem will be fixed in a future version of Oracle
Rdb. ♦

2.5.2 SQL Pascal Precompiler Processes ARRAY OF RECORD Declarations
Incorrectly

OpenVMS
VAX

OpenVMS
Alpha

The Pascal precompiler for SQL gives an incorrect %SQL-I-UNMATEND error
when it parses a declaration of an array of records. The precompiler does not
associate the END statement with the record definition, and the resulting
confusion in host variable scoping causes a fatal error.

To avoid the problem, declare the record as a type and then define your array of
that type. For example:

main.spa:

program main (input,output);

type
exec sql include ’bad_def.pin’; !gives error
exec sql include ’good_def.pin’; !ok
var

a : char;

begin
end.

bad_def.pin

x_record = record
y : char;
variable_a: array [1..50] of record

a_fld1 : char;
b_fld2 : record;

t : record
v : integer;

end;
end;

end;
end;

good_def.pin

good_rec = record
a_fld1 : char;
b_fld2 : record

t : record
v: integer;

end;
end;

end;

Known Problems, Restrictions, and Other Notes 2–23

x_record = record
y : char
variable_a : array [1..50] of good_rec;

end; ♦

2.6 Oracle RMU Known Problems and Restrictions for Oracle Rdb
Version 6.1 and Earlier

The following and restrictions problems from Oracle Rdb Version 6.1 and earlier
still exist.

2.6.1 Oracle RMU Commands Pause During Tape Rewind
Digital UNIX For Oracle Rdb V6.1 or higher on Digital UNIX, the Oracle RMU Backup and

Restore commands pause under certain conditions.

If multiple tape drives are used for RMU Backup or RMU Restore commands
and a tape needs to rewind, the Oracle RMU command pauses until the rewind
is complete. This is different from behavior on OpenVMS systems where the
command continues to write to tape drives that are not rewinding.

There is no workaround for this problem. ♦

2.6.2 TA90 and TA92 Tape Drives Are Not Supported on Digital UNIX
Digital UNIX When rewinding or unloading tapes using either TA90 and TA92 drives,

Digital UNIX intermittently returns an EIO error, causing the Oracle RMU
operation to abort. This problem occurs most often when Oracle RMU accesses
multiple tape drives in parallel. However, the problem occurs even with single-
tape drive access.

As a result of this problem, Oracle Rdb for Digital UNIX supports neither TA90
nor TA92 tape drives. ♦

2.7 RDML Known Problems and Restrictions for Version 7.0 and
Earlier

OpenVMS
VAX

OpenVMS
Alpha

The following problems exist in Version 7.0.

2.7.1 RDML Generates Undefined Symbol at Link Time Using Multiversion
Oracle Rdb

When the multiversion variant of Oracle Rdb V5.1 and later versions are
installed, Pascal code containing RDML statements may generate undefined
symbols at link time. This occurs when the code inherits a Pascal environment
file that also contains RDML statements and the code is compiled with the
/DEBUG qualifier against a V4.0 database. The following errors are generated:

%LINK-W-NUDFSYMS, 2 undefined symbols:
%LINK-I-UDFSYM, RDML$VPAS_INITIALIZE2
%LINK-I-UDFSYM, RDML$VPAS_START_TRANS2

This problem is caused by using a non-varianted version of the RDMLVPAS.PAS
file. RDML may add new versions of files for new releases. For example,
RDML added new functions RDML$VPAS_INITIALIZE2 and RDML$VPAS_
START_TRANS2 for V5.1 and RDML$VPAS_INITIALIZE3 for V6.0. If you use
multiversion, always refer to the latest version of the RDMLVPAS.PAS.

2–24 Known Problems, Restrictions, and Other Notes

To avoid this problem, always link against the latest version of RDMLRTL.OLB
for multiversion support. Alternatively, you can use the DCL command LIBR
/EXTRACT=(RDML_VPAS_SUPPORT) to extract the object file for RDML$VPAS_
INITIALIZE2, RDML$VPAS_INITIALIZE3 and RDML$VPAS_START_TRANS2
and then use the LIBR/REPLACE command to manually insert it into the
RDMLRTL.OLB for V4.2 and V5.1, as shown in the following example:

$ library/extract=RDML_VPAS_SUPPORT/out=vpas.obj sys$library:rdmrtl60
$ library/replace/log sys$library:rdmrtl42 vpas.obj

♦

2.8 Oracle CDD/Repository Notes of General Interest
OpenVMS
VAX

OpenVMS
Alpha

This section describes notes of general interest, including known problems and
restrictions for the repository for Version 7.0, including problems first seen in
previous versions.

2.8.1 Oracle CDD/Repository Compatibility with Oracle Rdb Features
Some Oracle Rdb features are not fully supported by all versions of Oracle
CDD/Repository. Table 2–1 shows which versions of Oracle CDD/Repository
support Oracle Rdb features and the extent of support.

In Table 2–1, repository support for Oracle Rdb features can vary as follows:

• Explicit support—The repository recognizes and integrates the feature, and
you can use the repository to manipulate the item.

• Implicit support—The repository recognizes and integrates the feature, but
you cannot use any repository interface to manipulate the item.

• Pass-through support—The repository does not recognize or integrate the
feature, but allows the Oracle Rdb operation to complete without aborting or
overwriting metadata. With pass-through support, a CDD-I-MBLRSYNINFO
informational message may be returned.

Table 2–1 Oracle CDD/Repository Compatibility for Oracle Rdb Features

Oracle Rdb Feature
Minimum Version
of Oracle Rdb

Minimum Version of
Oracle CDD/Repository Support

CASE, NULLIF, and
COALESCE expressions

V6.0 V6.1 Implicit

CAST function V4.1 V7.0 Explicit

Character data types to support
character sets

V4.2 V6.1 Implicit

Collating sequences V3.1 V6.1 Explicit

Constraints (PRIMARY KEY,
UNIQUE, NOT NULL, CHECK,
FOREIGN KEY)

V3.1 V5.2 Explicit

CURRENT_DATE, CURRENT_
TIME, and CURRENT_
TIMESTAMP functions

V4.1 V7.0 Explicit

(continued on next page)

Known Problems, Restrictions, and Other Notes 2–25

Table 2–1 (Cont.) Oracle CDD/Repository Compatibility for Oracle Rdb Features

Oracle Rdb Feature
Minimum Version
of Oracle Rdb

Minimum Version of
Oracle CDD/Repository Support

CURRENT_USER, SESSION_
USER, SYSTEM_USER
functions

V6.0 V7.0 Explict

Date arithmetic V4.1 V6.1 Pass-through

DATE ANSI, TIME,
TIMESTAMP, and INTERVAL
data types

V4.1 V6.1 Explicit

Delimited identifiers V4.2 V6.11 Explicit

External functions V6.0 V6.1 Pass-through

External procedures V7.0 V6.1 Pass-through

EXTRACT, CHAR_LENGTH,
and OCTET_LENGTH functions

V4.1 V6.1 Explicit

GRANT/REVOKE privileges V4.0 V5.0 accepts but does
not store information

Pass-through

Indexes V1.0 V5.2 Explicit

INTEGRATE DOMAIN V6.1 V6.1 Explicit

INTEGRATE TABLE V6.1 V6.1 Explicit

Logical area thresholds for
storage maps and indexes

V4.1 V5.2 Pass-through

Multinational character set V3.1 V4.0 Explicit

Multiversion environment
(multiple Rdb versions)

V4.1 V5.1 Explicit

NULL keyword V2.2 V7.0 Explicit

Oracle7 compatibility functions,
such as CONCAT, CONVERT,
DECODE, and SYSDATE

V7.0 V7.0 Explicit

Outer joins, derived tables V6.0 V7.0 Pass-through

Query outlines V6.0 V6.1 Pass-through

Storage map definitions correctly
restored

V3.0 V5.1 Explicit

Stored functions V7.0 V6.1 Pass-through

Stored procedures V6.0 V6.1 Pass-through

SUBSTRING function V4.0 V7.0 supports all
features
V5.0 supports all but
V4.2 MIA features 2

Explicit

Temporary tables V7.0 V6.1 Pass-through

Triggers V3.1 V5.2 Pass-through

TRUNCATE TABLE V7.0 V6.1 Pass-through

1The repository does not preserve the distinction between uppercase and lowercase identifiers. If you
use delimited identifiers with Oracle Rdb, the repository ensures that the record definition does not
include objects with names that are duplicates except for case.
2Multivendor Integration Architecture (MIA) features include the CHAR_LENGTH clause and the
TRANSLATE function.

(continued on next page)

2–26 Known Problems, Restrictions, and Other Notes

Table 2–1 (Cont.) Oracle CDD/Repository Compatibility for Oracle Rdb Features

Oracle Rdb Feature
Minimum Version
of Oracle Rdb

Minimum Version of
Oracle CDD/Repository Support

TRIM and POSITION functions V6.1 V7.0 Explicit

UPPER, LOWER, TRANSLATE
functions

V4.2 V7.0 Explicit

USER function V2.2 V7.0 Explict

2.9 Oracle CDD/Repository Restrictions for Oracle RdbV7.0 and
Earlier

This section describes known problems and restrictions in Oracle CDD/Repository
V7.0 and earlier.

2.9.1 Multischema Databases and CDD/Repository
You cannot use multischema databases with CDD/Repository and Oracle Rdb
V7.0 and earlier. This problem will be corrected in a future release of Oracle Rdb.

2.9.2 Interaction of Oracle CDD/Repository V5.1 and Oracle RMU Privileges
Access Control Lists

OpenVMS
VAX

Oracle Rdb provides special Oracle RMU privileges that use the unused portion
of the OpenVMS access control list (ACL) to manage access to Oracle RMU
operations.

You can use the RMU Set Privilege and RMU Show Privilege commands to set
and show the Oracle RMU privileges. The DCL SHOW ACL and DIRECTORY
/ACL commands also show the added access control information; however, these
tools cannot translate the names defined by Oracle Rdb.

Note

The RMU Convert command propagates the database internal ACL to the
root file for access control entries (ACEs) that possess the SECURITY and
DBADM (ADMINISTRATOR) privileges.

Oracle CDD/Repository protects its repository (dictionary) by placing the
CDD$SYSTEM rights identifier on each file created within the anchor directory.
CDD$SYSTEM is a specially reserved rights identifier created by Oracle
CDD/Repository.

When Oracle CDD/Repository executes the DEFINE REPOSITORY command, it
adds (or augments) an OpenVMS default ACL to the anchor directory. Typically,
this ACL allows access to the repository files for CDD$SYSTEM and denies access
to everyone else. All files created in the anchor directory inherit this default ACL,
including the repository database.

Unfortunately, there is an interaction between the default ACL placed on the
repository database by Oracle CDD/Repository and the Oracle RMU privileges
ACL processing.

Known Problems, Restrictions, and Other Notes 2–27

Within the ACL on the repository database, the default access control entries
(ACEs) that were inherited from the anchor directory will precede the ACEs
added by RMU Restore. As a result, the CDD$SYSTEM identifier will not have
any Oracle RMU privileges granted to it. Without these privileges, if the user
does not have the OpenVMS SYSPRV privilege enabled, Oracle RMU operations,
such as Convert and Restore, will not be allowed on the repository database.

The following problems may be observed by users who do not have the SYSPRV
privilege enabled:

• While executing a CDO DEFINE REPOSITORY or DEFINE DICTIONARY
command:

If the CDD$TEMPLATEDB backup (.rbf) file was created by a previous
version of Oracle Rdb, the automatic RMU Convert operation that will be
carried out on the .rbf file will fail because SYSPRV privilege is required.

If the CDD$TEMPLATEDB backup (.rbf) file was created by the current
version of Oracle Rdb, the restore of the repository database will fail
because the default ACEs that already existed on the repository file that
was backed up will take precedence, preventing RMU$CONVERT and
RMU$RESTORE privileges from being granted to CDD$SYSTEM or the
user.

If no CDD$TEMPLATEDB is available, the repository database will be
created without a template, inheriting the default ACL from the parent
directory. The ACE containing all the required Oracle RMU privileges
will be added to the end of the ACL; however, the preexisting default
ACEs will prevent any Oracle RMU privilege from being granted.

• You must use the RMU Convert command to upgrade the database disk
format to Oracle Rdb V7.0 after installing V7.0. This operation requires the
SYSPRV privilege.

During the conversion, RMU Convert adds the ACE containing the Oracle
RMU privileges at the end of the ACL. Because the repository database
already has the default Oracle CDD/Repository ACL associated with it, the
Oracle CDD/Repository ACL will take precedence, preventing the granting of
the Oracle RMU privileges.

• During a CDO MOVE REPOSITORY command, the Oracle RMU privilege
checking may prevent the move, as the RMU$COPY privilege has not been
granted on the repository database.

• When you execute the CDD template builder CDD_BUILD_TEMPLATE, the
step involving RMU Backup privilege has not been granted.

Oracle CDD/Repository Versions 5.2 and higher correct this problem. A version
of the Oracle CDD/Repository software that corrects this problem and allows new
repositories to be created using Oracle Rdb V7.0 is provided on the Oracle Rdb
V7.0 kit for use on OpenVMS VAX systems. See Section 2.9.2.1 for details.

2.9.2.1 Installing the Corrected CDDSHR Images

OpenVMS
VAX

Note

The following procedure must be carried out if you have installed or plan
to install Oracle Rdb for OpenVMS VAX V7.0 and have already installed
CDD/Repository V5.1 software on your system.

2–28 Known Problems, Restrictions, and Other Notes

Due to the enhanced security checking associated with Oracle RMU commands
in Oracle Rdb for OpenVMS VAX, existing CDDSHR images for CDD/Repository
V5.1 must be upgraded to ensure that the correct Oracle RMU privileges are
applied to newly created or copied repository databases.

Included in the Oracle Rdb Version 7.0 for OpenVMS VAX distribution kit is a
CDD upgraded image kit, called CDDRDB042, that must be installed after you
have installed the Oracle Rdb Version 7.0 for OpenVMS VAX kit.

This upgrade kit should be installed by using VMSINSTAL. It automatically
checks which version of CDDSHR you have installed and replaces the existing
CDDSHR.EXE with the corrected image file. The existing CDDSHR.EXE will be
renamed SYS$LIBRARY:OLD_CDDSHR.EXE.

The upgrade installation will also place a new CDD_BUILD_TEMPLATE.COM
procedure in SYS$LIBRARY for use with CDD/Repository V5.1.

Note

If you upgrade your repository to CDD/Repository V5.1 after you install
Oracle Rdb V7.0, you must install the corrected CDDSHR image again to
ensure that the correct CDDSHR images have been made available.

The CDD/Repository upgrade kit determines which version of
CDD/Repository is installed and replaces the existing CDDSHR.EXE
with the appropriate version of the corrected image.

2.9.2.2 CDD Conversion Procedure

OpenVMS
VAX

Oracle Rdb provides RDB$CONVERT_CDD$DATABASE.COM, a command
procedure that both corrects the anchor directory ACL and performs the RMU
Convert operation. The command procedure is located in SYS$LIBRARY.

Note

You must have SYSPRV enabled before you execute the procedure
RDB$CONVERT_CDD$DATABASE.COM because the procedure performs
an RMU Convert operation.

Use the procedure RDB$CONVERT_CDD$DATABASE.COM to process the
anchor directory and update the ACLs for both the directory and, if available, the
repository database.

This procedure accepts one parameter: the name of the anchor directory that
contains, or will contain, the repository files. For example:

$ @SYS$LIBRARY:DECRDB$CONVERT_CDD$DATABASE [PROJECT.CDD_REP]

If many repositories exist on a system, you may want to create a DCL command
procedure to locate them, set the Oracle RMU privileges ACL, and convert the
databases. Use DCL commands similar to the following:

Known Problems, Restrictions, and Other Notes 2–29

$ LOOP:
$ REP_SPEC = F$SEARCH("[000000...]CDD$DATABASE.RDB")
$ IF REP_SPEC .NES. ""
$ THEN
$ @SYS$LIBRARY:DECRDB$CONVERT_CDD$DATABASE -

’F$PARSE(REP_SPEC,,,"DIRECTORY")’
$ GOTO LOOP
$ ENDIF

♦

2–30 Known Problems, Restrictions, and Other Notes

3
Software Errors Fixed

The following sections describe problems with previous versions of the software
that are fixed for this release of Oracle Rdb.

This chapter begins with information pertinent to all users. Later sections
contain material specifically for users of SQL, RMU, RDO, and RDML.

3.1 Software Errors Fixed That Apply to All Interfaces
This section describes problems that have been fixed for all interfaces.

3.1.1 AIJ Switchover Suspension Prone to DBR-Induced Shutdown
If the AIJ switchover operation cannot complete because there are no available
.aij files, the database enters the ‘‘AIJ suspended’’ state. During this state, the
DBA can add new .aij files or perform database backups, but all other AIJ-related
activities are temporarily suspended until such time as an .aij file becomes
available.

During the AIJ suspended period, any DBR invocation causes the database to
be shut down. This is required because the DBR always writes either a commit
or rollback record to the .aij file. Note that even a DBR invoked for a read-only
transaction causes the database to be shut down.

The workaround to this problem was to always ensure that adequate .aij files
were available for the AIJ switchover operation.

This problem has been corrected in Oracle Rdb V7.0. A new logical name,
RDM$BIND_ALS_CREATE_AIJ, and configuration parameter, RDB_BIND_ALS_
CREATE_AIJ, have been added. This logical name and configuration parameter
indicate whether or not the ALS server is to create an ‘‘emergency’’ AIJ journal if
the AIJ switchover operation enters the suspended state. The default value "0"
indicates that the ALS should not create an .aij file. The value "1" indicates that
the ALS should attempt to create an .aij file. On OpenVMS, the logical name
must reside in the LNM$SYSTEM_TABLE logical name table.

When the logical name or configuration parameter is set to the value "1", the
ALS attempts to create an emergency AIJ journal using the previous .aij file as
a template. This means that the emergency AIJ journal is created in the same
directory, and with the same allocation, as the current .aij file being switched. If
an error occurs, such as inadequate disk space, the database simply enters the
‘‘AIJ suspended’’ state and the DBA must resolve the situation.

Caution

The emergency AIJ journal is not a temporary AIJ journal. Do not delete
it using any means other than through the standard database syntax
(SQL or RMU). Deleting the emergency AIJ journal through other means,

Software Errors Fixed 3–1

such as the operating system command line, will cause your database to
be shut down.

An emergency AIJ journal is a normal .aij file in all respects. The ALS
process is simply created to avoid the AIJ switchover suspension state.
DBR invocations due to application process failure during the .aij file
creation do not cause database shutdown.

You can specify the location of the emergency AIJ journal (device and directory)
by using the RDM$BIND_AIJ_EMERGENCY_DIR logical name or RDB_BIND_
AIJ_EMERGENCY_DIR configuration parameter.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, if you define this logical in the LNM$SYSTEM_TABLE logical
name table, you should only specify the device and directory where the emergency
AIJ journal is to be created. If defined, the RDM$BIND_AIJ_EMERGENCY_DIR
logical name applies to all databases on the current node. Furthermore, the
logical name must not contain any nonsystem concealed logical definitions. ♦

The ALS notifies the DBA through the operator notification facility that an
emergency AIJ journal has been created. Furthermore, the RMU Dump
Header command identifies any .aij file created by the ALS server process.
The Performance Monitor highlights any identified emergency AIJ journal.

When created, the file name of the emergency AIJ journal is ‘‘EMERGENCY_
XXX’’ where ‘‘XXX’’ is a series of 16 characters used to create an unique name.

Note

The creation of the emergency AIJ journal is not journaled.

There is no way to remove the emergency status of an emergency AIJ journal.
However, an emergency AIJ journal is a normal .aij file in all other respects.

3.1.2 Preventing Depletion of AIJ ARB Pool
In previous versions, when a large number of users was attached to a database on
a specific node, it was frequently possible to exhaust the AIJ request block (ARB)
pool. When this occurred, additional immediate processing was required to make
ARBs available. This resulted in a degradation of overall system performance.

This problem was extremely critical during the AIJ switchover operation.
Exhausting the ARB pool during AIJ switchover could greatly increase the
switchover duration, which greatly impacted all system processing.

There are four ARBs per user, with a maximum of 300 ARBs per node. Each
ARB requires 2K of global section space, and a corresponding 2K of user virtual
memory (VM).

This problem has been corrected in V7.0.

On OpenVMS, define the logical name RDM$BIND_AIJ_ARB_COUNT in the
LNM$SYSTEM_TABLE to define the number of ARBs allocated on the node.

On Digital UNIX, use the configuration parameter RDB_BIND_AIJ_ARB_
COUNT. There is no maximum value.

The default value is four times the maximum number of users minimized to 300.

3–2 Software Errors Fixed

3.1.3 Process Starvation and Hang During AIJ Switchover
In previous versions, when using the AIJ Log Server (ALS) process to manage
the AIJ group commit operations, it was possible during extremely highly CPU-
intensive operations that an .aij file switchover operation would result in 100%
saturation of all processors and the database would hang.

This problem only occurred when using the ALS process, and only when the ARB
pool had been exhausted. Under normal operating circumstances, this situation
was very rare.

The problem was caused by application processes trying to find space to flush
their AIJ records, when there was no space. The ALS process was trying to
flush the AIJ information to the .aij file, but was waiting for the AIJ switchover
operation to complete. The AIJ switchover operation could not complete because
not all processes could get enough CPU time to acknowledge the AIJ switchover
protocol.

The workaround was to increase the size of the .aij file so that AIJ switchover
did not occur during the busiest application processing periods. In addition, the
RMU Set After_Journal command with the Switch qualifier did not exhibit the
described behavior and could have been used as a workaround.

This problem has been corrected in V7.0. Application processes do not allow the
ALS process to complete the AIJ switchover operation by releasing their CPU
time-slice when no more AIJ ARBs are available.

3.1.4 After-Image Journal File Switchover Race Condition Corrected
In previous versions, during an AIJ switchover operation, it was possible for the
last commit transaction sequence number (TSN) stored in the new .aij file open
record to not be the last committed transaction TSN from the previous .aij file.
This was caused by the asynchronous nature of the .aij group commit mechanism.

This problem has been corrected in V7.0. The race condition that caused the
problem has been corrected; the last commit TSN of the new .aij file open record
accurately reflects the last committed transaction’s TSN from the old .aij file.

3.1.5 Failure to Open After-Image Journal No Longer Causes Locking
Problems

In previous versions, it was possible that a failure to open the .aij file would
not correctly clean up its locks, which led to subsequent locking problems.
This problem typically occurred during transaction start, or following an AIJ
switchover operation.

The cause of the failure to open the .aij file was usually resource related, typically
PGFLQUOTA or BYTLIM quota.

There was no workaround to the dangling lock problem. The affected process
needed to disconnect from the database to resolve the problem.

This problem has been corrected in V7.0. Any failure during the opening of an
.aij file now correctly cleans up affected resources.

Software Errors Fixed 3–3

3.1.6 DDL Operations on After-Image Journal Files No Longer Deadlock with
AIJ Switchover

In previous versions, it was sometimes possible for an AIJ switchover operation to
become deadlocked while performing data definition language (DDL) modifications
to the after-image journal.

The workaround was to not perform DDL operations on the after-image journal if
there was the possibility of an imminent AIJ switchover operation about to occur.

This problem has been corrected in V7.0.

3.1.7 AIJ Inaccessible After Node or Cluster Failure or When the Database Is
Stopped with Abort=Delprc Qualifier

In previous versions, the AIJ Log Server terminated abnormally and the current
AIJ file became inaccessible under the following database conditions:

• You used the SQL statement ALTER DATABASE with the NUMBER OF
CLUSTER NODES IS clause set to 1.

• An AIJ cache file on an electronic disk and the AIJ log server (ALS) process
were enabled.

• The database was stopped with Abort=Delprc qualifier with an active
transaction and, subsequently, the database was reopened.

In the case of cluster failure or node failure, because the database needed
recovery, and the monitor ID for the dead node was 1, the monitor assigned the
database a new ID 2 for recovery reasons, even if it was the same monitor as
before. However, since the database was created with NODES=1, there was no
room in the ACE file when the monitor ID exceeded the maximum number of
nodes. The result was an inaccessible .aij file.

This problem involved all interfaces.

The workaround to this problem was to change the number of database nodes to
a minimum of 2 or to disable the AIJ cache file on an electronic disk.

This problem has been corrected in V7.0. Now, when the ACE file is created, its
size is based on the maximum number of nodes in the database. When the ACE
file is accessed, the single file is partitioned among the various nodes based on the
monitor ID (the monitor ID is normally in the range 1:n where ‘‘n’’ is the number
of nodes in the database).

3.1.8 User Processes Do Not Hibernate on AIJ Submission
In previous versions, it was possible, on rare occassions, for user processes to
stall for long periods when writing to the AIJ. The stall messages screen in
the Performance Monitor indicated those processes as ‘‘Hibernating on AIJ
submission’’.

The problem was caused by a small race condition between the AIJ Log Server
(ALS) process determining whether it needed to hibernate, and application
processes determining whether to wake up a hibernating ALS process.

The workaround was to stop using the ALS.

This problem has been corrected in V7.0.

3–4 Software Errors Fixed

3.1.9 Performance No Longer Degrades in Dynamic OR Optimization

OpenVMS
VAX

In previous versions, some queries using the OR predicate, for which Oracle Rdb
uses the dynamic OR optimization technique, sometimes experienced performance
slowdown. The following query, where table T1 has an index on column F1, uses
the dynamic OR optimization technique (the debug flag is defined as S):

SELECT F1, F2 FROM T1 WHERE F1 = :F1A OR F1 = :F1B
Conjunct Get Retrieval by index of relation T1
Index name I1 [1:1...]2

The slowdown happened if a query, such as the previous one, was executed
multiple times and one of the executions was such that the values supplied for
the OR predicate collapsed into one range. All subsequent executions could have
suffered from performance degradation, as Oracle Rdb scanned the complete
range of index keys between the two supplied values.

This problem has been corrected in V7.0. ♦

3.1.10 Recovery and Fast Commit No Longer Results in Database Corruption
In previous versions, there was a rare failure scenario where databases using
the fast commit feature could have lost updates to the database. The problem
occurred when multiple processes failed and had to be recovered by database
recovery (DBR) processes. For example:

1. Process 1 updated a database page and flushed the page to disk. No commit
was done.

2. Process 2 updated the same page and committed, but did not checkpoint; thus
the page update was not flushed to disk.

3. Process 1 failed and a DBR process began to recover the process. Because the
process did not commit, its updates were rolled back (undone) by the DBR
process. The DBR process incorrectly incremented the page sequence number
on the page, making the page appear to have contained updates done by
process 2 even though the updates were not actually on the page.

4. Process 2 failed and a DBR process began. In this case, because the process
had committed without a checkpoint, its updates needed to be redone. The
DBR process examined the page, found that the page sequence number on
the page indicated that the updates from process 2 were on the page, and
incorrectly determined that those lines did not need to redone. The page
updates done by process 2 were lost.

This problem has been corrected in V7.0.

3.1.11 Recovery Process No Longer Hangs When Using Global Buffers

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, when using global buffers, if a user process was abnormally
terminated with the DCL STOP/ID command (or DELETE/ENTRY for a batch
job), the DBR process could have become deadlocked with another user process.
The only solution to this problem was to stop the DBR process, which resulted in
the database being shut down.

The deadlock condition was due to a user process holding a global section latch
(in this context, latch is a type of lock within the global section) while it was
waiting for a freeze lock. The DBR process was waiting for the user process’s
latch, causing the freeze.

Software Errors Fixed 3–5

As a workaround, when making very heavy use of global buffers, you would not
have abnormally terminated user processes with the STOP/ID command or, in the
case of batch jobs, DELETE/ENTRY.

This problem has been corrected in V7.0. The DBR process now correctly
identifies and resolves the deadlock condition. ♦

3.1.12 DBR No Longer Fails During REDO When Fast Commit Is Enabled
In previous versions, when the AIJ Fast Commit feature was enabled, it was
possible for the (DBR) process to fail during the Redo phase because insufficient
space existed on the affected data page.

A dump of the affected page showed that it had some locked free space reserved
by a process that wrote that page several days before. The RMU Dump
Users command also revealed that this TID was still active. Since this was
an unexpected problem, the DBR process bugchecked.

A scenario such as the following could cause this problem:

1. A process, P1 with TID N, had deleted all rows from page STAREA:PNO
several days ago.

2. Another process, P2, stored 2 new rows on that page and committed the data.
The page was not written out (because fast commit was enabled).

3. Process P3 attached to the database, and was assigned TID N again.

4. Process P1 failed due to an application error.

5. The DBR Redo process for P1 failed because all space on page STAREA:PNO
appeared to be reserved.

The only workaround was to disable the AIJ Fast Commit feature.

This problem has been corrected in V7.0. The DBR process now correctly analyzes
the data page with respect to active processes.

3.1.13 DBR No Longer Rolls Back Committed Transaction Data
In previous versions, when you enabled the commit-to-journal option, there was
a scenario whereby the DBR process sometimes rolled back the last transaction
to have written .ruj records for a failed process. The rollback occured when
the failed process had a committed read-only transaction perform a checkpoint
operation subsequent to the last database modification transaction.

Only the information in the .ruj file was rolled back. If the committed transaction
did not write an .ruj record for every database modification, the transaction was
partially rolled back. This sometimes resulted in a corrupted database.

The problem was caused by the introduction of read-only transactions, which
caused the commit-to-journal option to be dynamically disabled.

This problem only occurred when the commit-to-journal option was enabled
and read-only transactions were frequently utilized. Furthermore, this problem
only occurred when a read-only transaction performed a checkpoint operation
subsequent to committing a read/write transaction, and then, subsequent to the
checkpoint, the process failed abnormally.

The problem did not occur if read-only transactions were rolled back instead of
committed.

3–6 Software Errors Fixed

You could identify the problem by using the RMU Dump Header command to
examine the .aij file. A rollback record with a TSN less than the last commit
record of the same process was an indication that the problem had occurred.

The workaround was to disable the .aij commit-to-journal option or to use a
read/write transaction.

This problem has been corrected in V7.0.

3.1.14 DBR Now Validates Checkpoint During REDO

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, when using concealed logical names for the .aij filename, it
was possible for the (DBR) process to access the incorrect .aij file. This occurred
because the DBR process is invoked by the database monitor, typically through
the SYSTEM account.

The result was that the DBR process attempted to perform transaction REDO
using an .aij file that did not directly correspond to the database that the failed
process was accessing. This condition was not detected.

The result of this problem was that the DBR process might have rolled back the
last committed transaction for the failed process.

The workaround was to not use concealed logical names.

This problem has been corrected in V7.0. The DBR process will bugcheck, and the
database will be immediately shutdown if the proper .aij file cannot be accessed.
♦

3.1.15 PAGE TRANSFER VIA MEMORY and Fast Incremental Backup No
Longer Cause PIO$MARK_SNUB Bugcheck

In previous versions, when the PAGE TRANSFER VIA MEMORY and fast
incremental backup features were both enabled, it was possible to produce a
bugcheck dump when a storage area readied to concurrent read access fetched a
modified page from another process.

The workaround was to disable either the PAGE TRANSFER VIA MEMORY
feature or the fast incremental backup feature.

This problem has been corrected in Oracle Rdb V7.0.

3.1.16 Bugchecks at PIOFETCH$WITHIN_DB + 0784 Eliminated

OpenVMS
Alpha

In previous versions, Oracle Rdb sometimes bugchecked in PIOFETCH$WITHIN_
DB + 0784 because a register was incorrectly sign extended from 32 bits to 64
bits.

The following extract from an Oracle Rdb dump file shows an example call trace
of this problem:

***** Exception at 02B1B584 : PIOFETCH$WITHIN_DB + 000007C4
%COSI-F-BUGCHECK, internal consistency failure
Saved PC = 02B18C2C : PIO$FETCH_RET + 000002BC
Saved PC = 02B17EE4 : PIO$FETCH + 0000036C

Usually, the operation was successful if you tried it again.

This problem has been corrected in V7.0. ♦

Software Errors Fixed 3–7

3.1.17 Bugcheck at Transaction Commit Is Now Fixed
In previous versions, certain conditions caused committing the current
transaction to produce a bugcheck dump. This occurred under a series of events
related to record lock acquisition and conflicts, which resulted in the bugcheck at
commit time.

This problem has been corrected in V7.0.

3.1.18 Now Can Create a Database with Lock Partitioning and Global Buffers

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, when you created a database and specified both GLOBAL
BUFFERS ENABLED and LOCK PARTITIONING ENABLED, Oracle Rdb
bugchecked with a COSI-F-ACCVIO exception.

The following example shows how this problem could have occurred:

SQL> CREATE DATABASE FILENAME FOO
cont> GLOBAL BUFFERS ENABLED
cont> LOCK PARTITIONING ENABLED;
%SQL-I-BUGCHKDMP, generating bugcheck dump file DSK$:[DIR]SQLBUGCHK.DMP;
%COSI-F-ACCVIO, access violation

A workaround was to not specify LOCK PARTITIONING ENABLED when
creating a database. Once the database had been created, you could enable this
feature using the ALTER DATABASE command.

This problem has been corrected in V7.0. ♦

3.1.19 Oracle Rdb No Longer Fails on OpenVMS Alpha V7.0

OpenVMS
Alpha

Previous versions of Oracle Rdb running on OpenVMS Alpha V7.0 generated
bugchecks within the OpenVMS exception handling code. This occurred when
certain Oracle Rdb exceptions were raised. When raising the exception, the
OpenVMS exception handling system code failed with an access violation (accvio)
exception.

The following extract from an Oracle Rdb bugcheck dump file shows the exception
within the OpenVMS exception handling routine in S0 (system) address space
after an exception was signaled in the Oracle Rdb LCK$LOCK routine:

Saved PC = 01065774 : KOD$BUGCHECK_DUMP + 00001014
Saved PC = 00DA3C6C : RDMS$$TOP_DSDI_CLEANUP + 0000021C
Saved PC = 00DA3634 : RDMS$$TOP_DSDI_HNDLR + 0000017C
Saved PC = 80007164 : S0 address
Saved PC = 8C4D059C : S0 address
***** Exception at 8C4CE670 : S0 address
%SYSTEM-F-ACCVIO, access violation, reason mask=00,
virtual address=00000000011D8F28, PC=FFFFFFFF8C4CE670, PS=00000009
Saved PC = 00F6A7A0 : LCK$LOCK + 00000908
Saved PC = 00E84344 : RDMS$$RDMSCHEMA_LOAD_TABLE + 00000D0C
Saved PC = 00CACADC : RDMS$$RETURN_SYMBOL + 0000008C

This problem was due to the way that the Oracle Rdb RDMSHRP image was
linked. This image has a static copy of LIB$SIGNAL from the object library
STARLET.OLB (from OpenVMS V1.5 or V6.1, depending on the Oracle Rdb
version) linked with it. This older LIB$SIGNAL code is not compatible with the
new exception code in OpenVMS Alpha V7.0, because of changes in the OpenVMS
mechanism array format. Therefore, Oracle Rdb caused the access violation
exception in the OpenVMS system code.

3–8 Software Errors Fixed

This problem has been corrected in V7.0. The RDMSHRP image is linked against
the LIBRTL.EXE image, which allows the corrent LIB$SIGNAL routine to be
used for the OpenVMS version being run. ♦

3.1.20 Multiple Connections No Longer Cause Missing Oracle Trace Data

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, when collecting Oracle Trace information and using
connections in Oracle Rdb, certain information was not being passed from
Oracle Rdb to Oracle Trace. This could have caused Oracle Trace to produce
incorrect results.

The following example shows an SQL session that does not use connections.
Oracle Trace events collected for this session would not have included all required
data for connection CON_2.

SQL> ATTACH ’FILE MF_PERSONNEL’;
SQL>
SQL> SELECT * FROM SALARY_HISTORY LIMIT TO 1 ROWS;
SQL> ROLLBACK;
SQL>
SQL> CONNECT AS ’CON_1’;
SQL> CONNECT AS ’CON_2’;
SQL>
SQL> SET CONNECT ’CON_1’;
SQL> SELECT * FROM COLLEGES LIMIT TO 2 ROWS;
SQL> ROLLBACK;
SQL>
SQL> SET CONNECT ’CON_2’;
SQL> SELECT * FROM DEPARTMENTS LIMIT TO 3 ROWS;
SQL> ROLLBACK;

There were no workarounds to this problem.

This problem has been corrected in V7.0. ♦

3.1.21 Nominal Record Length Now Stored in AIP for UNIQUE Indexes
In previous versions, when a user created an index and did not specify a NODE
SIZE parameter for the index, Oracle Rdb created the logical area, with a default
record length of 215, which it stored in the area inventory page (AIP) and used for
searching for space for creating new index nodes. Some applications experienced
prolonged waits while inserting or updating records due to an excessive number
of pages being checked before creating a new index node.

The recommended method to alter this behavior and improve performance is to
determine proper threshhold parameters for the storage areas or to explicitly
specify a NODE SIZE parameter when creating the index.

In V7.0, the RECORD LENGTH parameter used to create the logical areas for
UNIQUE indexes is now the same as that used for the default index node size,
because there is no need to allow for space for duplicates nodes in these logical
areas.

However, there is a potential side-effect. If two or more sorted indexes are
created in the default storage area, the RECORD LENGTH value stored in the
AIP depends on whether the first index created was UNIQUE or NOT UNIQUE.

For related information, see Section 3.1.22.

Software Errors Fixed 3–9

3.1.22 Node Size Calculation for Unique Sorted Indexes
When a unique sorted index is defined in V7.0, the default node size is calculated
differently than in previous versions.

In previous versions, if a unique sorted index was defined without specifying
the NODE SIZE clause, the AIP length for the logical area was estimated as
215 bytes. Often, this caused pages to be fetched from disk and then discarded
because the actual node would not fit on the page.

In V7.0, this estimation has been changed, as follows:

• The smallest node size for a sorted index can be calculated using the following
formula:

keylength = sum of all column lengths, plus 1 null byte per column (the
keylength may not exceed 255 bytes)

overhead = 11 (or 18 for sorted ranked indexes)

The extra overhead for sorted ranked indexes is used to store cardinality
estimates to assist the optimizer.

minimum_length = 3 * (keylength + overhead) + 32

• If no NODE SIZE is specified, Oracle Rdb defaults to 430 bytes unless this is
greater than the minimum_length shown in the previous calculation, in which
case Oracle Rdb defaults to 860 bytes.

• If a NODE SIZE is specified, it must be greater than the minimum_length
shown in the calculation.

• The maximum NODE SIZE that can be specified for a sorted index is 32767
bytes.

3.1.23 Performance Enhancement for Storage Maps and Mapped Indexes
In previous versions, some large applications with very many partitions for some
tables noted a performance degradation. The degradation was in the form of
excessive amounts of virtual memory and CPU usage.

The Oracle Rdb partitioning scheme permits great flexibility for spreading
data across storage devices. Unfortunately, this very flexibility turns into a
shortcoming for databases with tables and indexes spread across hundreds of
devices or files. For these very large databases, a simpler scheme was developed
which had much more desirable performance characteristics. Beginning with
V6.0, whenever a table or index was partitioned using only an unscaled, integer
column (INTEGER or SMALLINT), Oracle Rdb automatically implemented a
simpler, better performing algorithm.

Beginning with V7.0, Oracle Rdb extends the use of this algorithm to almost
any partitioning scheme that only relies upon a single key for its decision. Note
that the partitioning criteria must match the data type of the column used for
partitioning. The exception to the use of this algorithm is when the partitioning
criteria uses columns that are scaled integers.

3–10 Software Errors Fixed

3.1.24 Memory Leak Plugged for Insert with Storage Maps
In previous versions, if the user executed an INSERT statement for a table with
storage maps, the memory requirement for the user’s process tended to grow. It
would take quite some time for the user to notice the problem and most likely
this would only happen in a nonprecompiled environment.

This problem has been corrected in V7.0.

3.1.25 Update on Rows with Many Missing Values
In previous versions, some unusual update operations encountered bugchecks.
The columns in the tables which were updated used the RDO MISSING VALUE
construct. Manifestations of the error included either bugchecks or unexpected
results. The bugcheck was of the form Exception at XXXXXXX : STR$COPY_R_R8 +
XXXXXXX"

One workaround was to update fewer columns in the update statement because
the problem occurred only when five or more columns were updated in one
statement.

This problem has been corrected in V7.0.

3.1.26 Long Records on Alpha Platforms No Longer Cause Problems

OpenVMS
Alpha

Digital UNIX In previous versions, if a user created a table with records longer than 32767
bytes and altered the table, a bug appeared on Alpha platforms. The most
obvious manifestation of the bug was a bugcheck at RDMS$$OTS_MOVE+8.
Less obvious manifestations were loss of null bits in the current versions of
the record, or data corruption in the executive — which may or may not have
made itself known. If such records were not updated on Alpha platforms, future
versions of Oracle Rdb read the records correctly. If they were updated, Oracle
Rdb recommended reviewing the data for possible loss of NULL information.

This problem has been corrected in V7.0. ♦

3.1.27 Record Compression on Alpha Platforms

OpenVMS
Alpha

Digital UNIX In previous versions, certain records may have been compressed incorrectly on
Alpha platforms. Only records that ended with 129 or 130 zeroes—or 128*n+(129
or 130) and had a multiple of 8 columns in the record, none of which were null,
were compressed incorrectly. The string of zeroes had to start at a particular
offset in the record, such that if the earlier conditions were met, there was only a
1 in 8 chance of encountering the bug.

There were also scenarios for bit patterns other than zeroes that also required
particular patterns for the nulls in the record. For example, with spaces as the
last string of bytes, every second, tenth, eighteenth, and so forth, column in the
record would have to be null to encounter this bug. Retrieval of such a record
would either result in a bugcheck or erroneous data.

The following shows an example of the problem:

CREATE DATABASE FILENAME FOO;
CREATE DOMAIN Q BIGINT;
CREATE TABLE BAR (X1 CHAR(1),X2 CHAR(1), X3 CHAR(1), X4 CHAR(1),

X5 CHAR(1), X6 CHAR(1), X7 CHAR(1), X8 CHAR(4),
F1 Q, F2 Q, F3 Q, F4 Q, F5 Q, F6 Q, F7 Q, F8 Q,
F9 Q, F10 Q, F11 Q, F12 Q, F13 Q, F14 Q, F15 Q, F16 Q);

INSERT IN BAR VALUES (’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,
7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

Software Errors Fixed 3–11

SELECT f1 FROM BAR;
F1

1638407
1 row selected

Workarounds included not using compression or adding a column to the record.

This problem has been corrected in V7.0. ♦

3.1.28 Database No Longer Hangs If Process Holding Logical Area Lock Does
Not Release Lock

In previous versions, Oracle Rdb database applications would sometimes hang
waiting for a process that did not have a database transaction active to release a
logical area lock. During the commit process there was a small window of time
where Oracle Rdb could receive a blocking AST (BlAST) from another process for
a logical area lock but the lock would not be released. The process would continue
to hold the lock until a new transaction was started and the process received
another blocking AST.

This problem has been corrected in V7.0.

3.1.29 Excessive Root File I/O
In previous versions, it was possible for Oracle Rdb to excessively read the
database root (.rdb) file after a database process had an abnormal termination or
after a cluster node accessing the database failed. The problem was caused by
locking data structures becoming invalidated due to the abnormal failure and not
being properly validated again.

This problem has been corrected in V7.0.

3.1.30 Applications No Longer Hang When Executive Mode ASTs Are Disabled

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, in rare situations, application processes using Oracle Rdb
would hang when executive mode ASTs were disabled. Generally, if a process
is hung in this state, it is not possible to kill this process using the DCL STOP
command. This condition could have resulted in a hung database requiring a
system reboot to clear.

This condition was sometimes caused by an exception (for example, an access
violation) occuring in an Oracle Rdb executive mode AST routine, such as a lock
blocking AST routine. Once an exception occurred, the OpenVMS system scanned
the call frames looking for condition handlers to call. If the condition handler that
was called attempted any RMS I/O (to write out an error message, for example),
the RMS I/O could not complete because the process was at executive mode AST
level. RMS routines are not allowed to be called at that level. Oracle Rdb did not
enable its own condition handler in the executive mode AST routines.

This problem has been corrected in V7.0. Oracle Rdb now enables a condition
handler in the executive mode lock blocking AST routines. This handler correctly
lowers the AST level before starting an Oracle Rdb bugcheck dump. ♦

3.1.31 CREATE INDEX with SIZE IS Clause No Longer Returns Incorrect
Results

In previous versions, if the user created an index for a CHAR column with a SIZE
IS clause which exactly matched the size of the column, some queries returned
incorrect results.

3–12 Software Errors Fixed

The following example shows the previous, incorrect behavior. Note that the rows
for Tom Robinson should not have been returned for this query.

SQL> DROP INDEX emp_employee_id;
SQL> DROP INDEX emp_last_name;
SQL> CREATE INDEX fn on employees (first_name size is 10, city);
SQL> CREATE INDEX fx on employees (first_name, last_name, address_data_1);
SQL> SELECT * FROM employees
cont> where (first_name = ’Tom’ and last_name = ’S’ and employee_id >’0’)
cont> or (first_name = ’Tom’ and last_name > ’S’)
cont> or (first_name >’Tom ’);
EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
ADDRESS_DATA_1 ADDRESS_DATA_2 CITY

STATE POSTAL_CODE SEX BIRTHDAY STATUS_CODE
00229 Robinson Tom A
134 Lantern Lane Fremont

NH 03044 M 24-Feb-1934 1

00183 Nash Walter V
197 Lantern Lane Fremont

NH 03044 M 19-Jan-1925 1

00205 Bartlett Wes NULL
28 Page Hill Rd. Meadows

NH 03587 M 16-Apr-1950 1

3 rows selected

The workaround was to omit unneccessary SIZE IS clauses on the CREATE
INDEX statement or use a smaller value.

This problem has been corrected in V7.0.

3.1.32 LOCK_CONFLICT Error on Multiple Databases No Longer Leaves
Transaction Active

In previous versions, if you started a transaction on multiple databases and a
LOCK_CONFLICT error occurred on one of the databases, Oracle Rdb did not
roll back any transaction which may have been started on the other databases.
However, because the user’s transaction handle was cleared, there was no way
to explicitly roll back the started transaction. Any subsequent attempt to start
another transaction resulted in an EXCESS_TRANS error.

There was no workaround, other than starting the transactions on the databases
one at a time.

This problem has been corrected in V7.0.

3.1.33 System Metadata Index Corruption Fixed
In previous versions, indexes on the system tables could have become inconsistent
if multiple users were performing database definition operations at the same
time. This could have led to a variety of errors. For example, Oracle Rdb
sometimes became unable to locate tables that were defined in the database.
Various bugchecks could occur due to inconsistencies in the system metadata. For
example:

***** Exception at 00D06590 : PSII$REMOVE_BOTTOM + 000005F0
%COSI-F-BUGCHECK, internal consistency failure

***** Exception at 0039E529 : RDMS$$INSERT_SYMBOL + 000000EF
%COSI-F-BUGCHECK, internal consistency failure

Software Errors Fixed 3–13

The errors occurred because Oracle Rdb released locks on system metadata index
nodes prior to the end of the transaction. Releasing the locks made it possible for
there to be buried updates on index data which could result in corrupted indexes.

Index nodes that were locked using the ISOLATION LEVEL READ COMMITTED
clause could have locks released prior to the end of a transaction. System
metadata indexes are locked using this feature. Application code that used
the feature may also have encountered index corruption in indexes used by
user-defined tables.

This problem has been corrected in V7.0.

3.1.34 Checksum Errors on Alpha Processors Fixed

OpenVMS
Alpha

Digital UNIX In V6.1, in rare circumstances, it was possible for Oracle Rdb to store pages in
the database with incorrectly calculated page checksums. Attempts to access
those pages resulted in checksum errors. The checksum was always off by one.
For example, Oracle Rdb may have reported an error such as the following:

%RDMS-F-CANTREADDBS, error reading pages 2:14906-14906
-RDMS-F-CHECKSUM, checksum error - computed F7CE0831, page contained F7CE0830

This problem existed only in Oracle Rdb V6.1 on Alpha platforms. Checksum
errors that do not exhibit a difference of one are not caused by this problem. Most
checksum errors are caused by I/O subsystem problems. If the symptoms do not
exactly match the scenario described, the problem is likely to be due to errors in
the I/O subsystem, such as disks, controllers, or software drivers.)

This problem has been corrected in V7.0. ♦

3.1.35 Bugchecks at PIOAPF$AST + 78 Fixed
In previous versions, Oracle Rdb sometimes bugchecked in the routine
PIOAPF$AST with an ACCVIO error. This problem occurred only in processes
that were running as a batch job; it was due to conflicts with the SYS$FLUSH
RMS call used by DCL to flush the batch log file.

This problem sometimes caused random data structures to get corrupted in
shared memory (database global section) and thus other database processes could
have failed with various bugchecks at the same time.

To prevent or reduce the incidence of the problem, you could have done one of the
following:

• Increase the interval for batch log flushing using the DCL SET OUTPUT_
RATE command.

• Disable asynchronous prefetch via the RDM$BIND_APF_DISABLED logical.

This problem has been corrected in V7.0.

3.1.36 Detach Failure No Longer Returns Invalid Request Handle
Some high-throughput applications, such as transaction processing applications,
have found it desirable to use some specific capabilities of Oracle Rdb: the
RDM$BIND_LOCK_TIMEOUT_INTERVAL logical name, frequent disconnects
and attaches within the same program execution, and several processes updating
the database with this behavior. In previous versions, such applications
occasionally failed on the disconnect because of a timeout while updating
the cardinalities in the system tables. The net effect of this failure was that
subsequent queries might have failed with the error RDB$_BAD_REQ_HANDLE.

3–14 Software Errors Fixed

This error has been corrected in V7.0. The disconnect proceeds and ignores the
error returned while attempting to update the approximate cardinalities in the
system tables. Note that, as a result of this correction, the cardinalities are not
necessarily updated.

3.1.37 Error Details No Longer Lost from Remote Prefetch Operations
In previous versions, if you fetched rows or list data from a remote database and
an error occurred after the first row or segment, Oracle Rdb did not report all the
details on what went wrong.

For example, if you set the query limit with the SQL statement SET QUERY
LIMIT ROWS 3 and then executed an SQL SELECT * statement on a remote
database, the error message that appeared after the third row reported that a
quota has been exceeded, but not which quota.

The workaround was to disable prefetch by placing the following two lines in the
RDB$CLIENT_DEFAULTS.DAT (OpenVMS) or .dbsrc (Digital UNIX) file:

SQL_RCV_PREFETCH_ROWS 0
SQL_SGS_PREFETCH_ROWS 0

This problem has been corrected in V7.0.

3.1.38 Error Details No Longer Lost from Remote Databases
In previous versions, when transmitting status codes from a remote database,
Oracle Rdb garbled the information in the message vector if it encountered a code
from any facility other than ‘‘RDB’’ and the message code image for that facility
was not linked into the client-side program.

For example, an Oracle Rally application could not fetch the name of a failing
trigger in a remote database because that particular status code belongs to
‘‘RDMS’’ instead of ‘‘RDB’’, and Rally does not link in the ‘‘RDMS’’ message codes.

The workaround was to use the DCL SET MESSAGE command before running
the application program, to cause the missing message file to be available.

This problem has been corrected in V7.0.

3.1.39 Monitor No Longer Hangs After Certain Period of Activity
In previous releases, it was possible for the database monitor process to suddenly
stop processing user attaches and appear to be hung. The monitor process had to
be manually killed and re-started to make the system operational.

This situation could have been determined by analyzing the system using the
VMS SDA utility and examining the open channels (using the DCL SHOW PROC
/CHANNEL command). The mailbox channels (typically 2 of them, starting with
MBAn) ordinarly both have a status of ‘‘busy’’. If the mailboxes did not have a
status of busy, you encountered this problem.

There was no workaround to this problem. Issuing an RMU Open command
when the database was already open or an RMU Monitor Reopen_Log command
made the situation more likely to occur.

This problem has been corrected in V7.0.

Software Errors Fixed 3–15

3.1.40 Read-Only Transactions No Longer Fail with Deadlocks on SNAPSHOT
CURSOR 0

In previous versions, when you enabled the fast commit option and set snapshots
to enabled deferred, the SET TRANSACTION READ ONLY statement sometimes
failed with a deadlock on resource ‘‘SNAPSHOT CURSOR 0’’.

The resource SNAPSHOT CURSOR 0 is used to control the transition between
inactive and active snapshots, when snapshots are in deferred mode.

The problem occurred if the process starting the read-only transaction retained
locks on pages updated in a prior read/write transaction (as is the case when the
fast commit option is used). If a concurrent read/write process wanted to update
one of those pages, the deadlock occurred.

The following timeline illustrates the circumstances leading to the deadlock
(assuming a simple database with one table).

Process A Process B

ATTACH ’DA FI DEMO’;
ATTACH ’DA FI DEMO’;
SELECT * FROM T1;

SET TRANS READ WRITE;
SET TRANS READ ONLY;
(stalls: waiting for snapshot cursor 0)

DELETE FROM T1;
(stalls: waits for the first page of
table T1. Processes are in deadlock)

(transaction fails with %RDB-E-DEADLOCK)
(operation proceeds and completes)

This problem has been corrected in V7.0. The read-only transaction now releases
outstanding page locks before it starts stalling for the snapshot cursor 0 lock.

3.1.41 Attached Inactive Processes Now Perform Global Checkpoint
Operations

Beginning with V6.0A ECO 2 (V6.0-12), attached but inactive processes did not
always respond to global checkpoint operations. This rendered the AIJ backup
utilities, both manual and automatic, unable to backup the .aij file to which the
inactive processes referred.

The workaround was to detach inactive processes from the database.

This problem has been corrected in V7.0. Attached but inactive processes now
correctly respond to global checkpoint operations.

3.1.42 Undetected Global Checkpoint Deadlock Corrected
With previous versions, it was possible for the RMU Checkpoint command to
result in an undetected deadlock situation.

If an RMU Checkpoint command was issued while a process was waiting for a
resource used by another process, the global checkpoint operation hung. If at
that time, the second process decided to commit or rollback, the first process, the
second process, and the RMU Checkpoint command hung in a deadlock situation
that was not detected by the Lock Manager.

3–16 Software Errors Fixed

This was a deadlock situation where User 2 was waiting for the page lock that
User 1 had and User 1 was waiting for the ’global checkpoint’ lock that User
2 had. User 3 was waiting for both to acquire the global checkpoint so the
operation could be considered finished. However, User 2 acquired the global
checkpoint lock in a way that told the lock manager not to signal a deadlock for
that lock, therefore the deadlock was not detected.

You may think that because a process cannot checkpoint in the middle of a
transaction, making User 1 execute a COMMIT or ROLLBACK would clear the
situation. However, this was not the case. If User 1 committed or rolled back,
that process hung as well, for the previously mentioned reason.

The following example shows how to reproduce this problem using the mf_
personnel database:

USER 1 (PID: 2020232D)
======
Aztech RTA10:> SQL$
SQL> ATTACH ’FILENAME TEST’;
SQL> UPDATE SALARY_HISTORY SET SALARY_AMOUNT=30000 WHERE EMPLOYEE_ID=’12345’;
1 row updated
SQL>

USER 2 (PID: 202022FD)
======
Aztech RTA4:> SQL$
SQL> ATTACH ’FILENAME TEST’;
SQL> UPDATE SALARY_HISTORY SET SALARY_AMOUNT=30000 WHERE EMPLOYEE_ID=’00100’;

(Process hangs)

At this point, the Performance Monitor looked as expected:

Node: AZTECH Oracle Rdb V6.0-11 Performance Monitor 14-JUN-1995 08:46:59
Rate: 3.00 Seconds Stall Messages Elapsed: 00:16:30.31
Page: 1 of 1 DISK$_1:[JOE_USER.DIRECT.RDB60]TEST.RDB;1 Mode: Online

Process.ID Since...... Stall.reason............................. Lock.ID.
202022FD:1 08:43:28.52 - waiting for logical area 49 (PR) 28000DB5

An RMU Show Locks command with the Mode=Blocking qualifier showed the
following:

==
SHOW LOCKS/BLOCKING Information
==

--
Resource: logical area 49

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Waiting: 202022FD njl @ RTA4..... 28000DB5 00010001 PR NL
Blocker: 2020232D njl @ RTA10.... 02001E17 00010001 PR PW

Now, if User 3 issued an RMU Checkpoint command, that process hung as well:

USER 3 (PID: 20202304)
======

$ RMU/CHECKPOINT TEST

(process hangs)

Software Errors Fixed 3–17

At this point, the Performance Monitor and RMU Show Locks output showed the
following:

Node: AZTECH Oracle Rdb V6.0-11 Performance Monitor 14-JUN-1995 08:55:26
Rate: 3.00 Seconds Stall Messages Elapsed: 00:24:57.31
Page: 1 of 1 DISK$_1:[JOE_USER.DIRECT.RDB60]TEST.RDB;1 Mode: Online

Process.ID Since...... Stall.reason............................. Lock.ID.
202022FD:1 08:43:28.52 - waiting for logical area 49 (PR) 28000DB5
20202304:1u08:55:18.92 - waiting for global checkpoint (EX) 340025EA
2020232D:1 08:55:19.23 - waiting for global checkpoint (CR) 0700161A

==
SHOW LOCKS/BLOCKING Information
==

--
Resource: logical area 49

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Waiting: 202022FD njl @ RTA4..... 28000DB5 00010001 PR NL
Blocker: 2020232D njl @ RTA10.... 02001E17 00010001 PR PW

--
Resource: global checkpoint

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Waiting: 2020232D njl @ RTA10.... 0700161A 00010001 CR NL
Blocker: 20202304 njl @ RTA12.... 340025EA 00010001 EX NL
Blocker: 202022FD njl @ RTA4..... 01002CA6 00010001 CR CR

--
Resource: global checkpoint

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Waiting: 20202304 njl @ RTA12.... 340025EA 00010001 EX NL
Blocker: 202022FD njl @ RTA4..... 01002CA6 00010001 CR CR

The workaround was to use the RMU Checkpoint command with the Nowait
qualifier.

This problem has been corrected in V7.0. The RMU Checkpoint command has
been corrected to perform the global checkpoint operation in a manner that does
not cause an undetected deadlock situation to occur.

3.1.43 Null Fields Now Detected from Versioned Tables

OpenVMS
Alpha

In previous versions on OpenVMS Alpha systems, Oracle Rdb sometimes
incorrectly handled null columns in rows from older versions of a table. Null
columns could have returned the default column value rather than the null
indicator as expected. The same operation worked correctly on an OpenVMS VAX
system.

In the following example, rows with a null STOCK_QUANTITY exist, but Oracle
Rdb returns a count of zero because the null column was not properly detected:

SQL> SELECT COUNT(*) FROM STOCK WHERE STOCK_QUANTITY IS NULL;

0
1 row selected

The workaround was to use an OpenVMS VAX system to modify all rows in the
table by using SQL, an application program, or RMU Unload and Load commands
to reload the table values. This converted each row to the current version of the
table.

This problem has been corrected in V7.0. Oracle Rdb for OpenVMS Alpha now
correctly detects null columns for old version rows in a table. ♦

3–18 Software Errors Fixed

3.1.44 System Table and Index Cardinalities Updated
In previous versions, the cardinalities of some system tables and indexes stored
in the system tables, RDB$RELATIONS and RDB$INDICES, were not kept
current as the database evolved. This was never a serious problem because of the
way Oracle Rdb manages its internal information. However it was occasionally
disconcerting to some users.

Oracle Rdb V7.0 now maintains these, as well as other cardinalities, with the
same algorithm of approximate cardinality that is used for other tables and
indexes.

3.1.45 Database Attach No Longer Leaves Extra Channel Assigned

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, during a database attach operation, Oracle Rdb would
sometimes leave an extra channel assigned to a disk or network device. Because
of this, repeated database detach and attach operations eventually consumed all
available channels. This would ultimately cause a database operation to fail with
a SYSTEM-F-NOIOCHAN error.

This problem has been corrected in V7.0. Channels are now released correctly. ♦

3.1.46 Bugchecks at PSIISCAN$BWS_SEARCH_SCR + D1 No Longer Occur
In previous versions, the following bugcheck sometimes occurred during backward
scans of a sorted index:

***** Exception at 00557FC2 : PSIISCAN$BWS_SEARCH_SCR + 000000D1
%COSI-F-BUGCHECK, internal consistency failure

The bugcheck was due to an erroneous consistency check. The index was actually
consistent.

The following example demonstrates the problem:

SQL> CREATE DATABASE FILENAME BWS_PROBLEM;
SQL> CREATE TABLE BWS_TABLE (ID_NUM CHAR(4), DESC_COL CHAR);
SQL> COMMIT;
SQL> BEGIN
cont> DECLARE :ID INT;
cont> WHILE :ID < 1000
cont> LOOP
cont> INSERT INTO BWS_TABLE VALUES (:ID, ’ ’);
cont> SET :ID = :ID + 1;
cont> END LOOP;
cont> END;
SQL> COMMIT;
SQL>
SQL> SELECT COUNT (*) FROM BWS_TABLE;
SQL> CREATE INDEX BWS_INDEX ON BWS_TABLE (ID_NUM, DESC_COL DESC)
cont> TYPE IS SORTED NODE SIZE 86 PERCENT FILL 10;
SQL> COMMIT;
SQL> DELETE FROM BWS_TABLE WHERE id_num > ’109’ AND id_num < ’114’;
SQL> COMMIT;
SQL> SELECT * FROM BWS_TABLE WHERE id_num = ’110’ ORDER BY desc_col;
%RDMS-I-BUGCHKDMP, generating bugcheck dump file ...
%COSI-F-BUGCHECK, internal consistency failure

One workaround was to rebuild the index. Another workaround was to
restructure the query such that a backward scan was not used on the index.

This problem has been corrected in V7.0.

Software Errors Fixed 3–19

3.1.47 Invalid Monitor Home Directory No Longer Causes Server Failures
In previous versions, if the directory from which the database monitor was
invoked was not valid, any server processes subsequently invoked by that monitor
possibly would not be able to create files. For example, a directory is not valid
if it no longer exists or the directory specification cannot be parsed because
it contains process-local concealed logicals. The files typically created by the
database server processes are temporary work files that are created in the home
directory, which is inherited from the database monitor.

The problem was identified by a failure of one of the database server processes,
usually the AIJ backup server (ABS). It was possible, but less likely, that the
other database server processes could be affected by this problem. When the
database recovery (DBR) process encountered this problem, the database was
shutdown.

The affected server process failed in its attempt to create a file, with the following
exception:

***** Exception at 0002CB38 : AIJBCK$CREATE_BACKUP_FILE + 000001D4
%RDMS-F-FILACCERR, error parsing name of file SYS$DISK:[].AIJ;
-RMS-F-DIR, error in directory name

This error indicated a problem when the ABS process was building the file
specification of the .aij file. One step in that process requires parsing the current
working directory of the server process. If that directory cannot be successfully
parsed, the parse system call fails and the ABS process aborts with a bugcheck.

A server process inherits its current working directory (home directory) from its
creator, the database monitor process. The monitor process inherits the home
directory from the process that starts it (that is, the user process issuing the
RMU Monitor Start or @RMONSTART commands).

The workaround was to make sure the monitor was always started when the
current working directory of the starting process was valid, that is, could be
successfully parsed. You could achieve this using the following simple DCL:

$ IF F$PARSE("SYS$DISK:[]",,,,"SYNTAX_ONLY") .EQS. "" THEN -
WRITE SYS$OUTPUT "Bad default directory !"

Once the problem began, you needed to close all databases, then stop the monitor
on the affected node, set default to a valid directory and restart the monitor.

This problem has been corrected in V7.0. Before invoking any server process,
the database monitor verifies the validity of its home directory syntax and the
existence of the home directory. If there are any problems during the verification
process, the following message is written to the monitor log:

10-AUG-1995 10:48:53.49 - received AIJ Log Server start request from 22000120:0
- home directory "CODD$:[ANDERS.WORK.ALS.TEST]" is invalid
- database monitor created AIJ log server RDM_ALS701_1 (22000134)
- sending normal AIJ Log Server start reply to requestor

The DBR, ALS and record cache server (RCS) processes are invoked regardless
of the validity of the monitor’s home directory. The LCS, LRS and ABS server
processes are not invoked if the database monitor’s home directory cannot be
accessed.

3–20 Software Errors Fixed

3.1.48 Large Queries No Longer Bugcheck at RDMS$$GEN_ROOM+14

OpenVMS
Alpha

In previous versions, when compiling a large query or module, Oracle Rdb
sometimes would bugcheck at RDMS$$GEN_ROOM + 00000014.

Note

This error is a generic failure indicator. Fixing one instance of the error
does not necessarily mean that all instances have been corrected. If you
experience any new occurrences of this bugcheck, please contact your
Oracle Supercenter or representative.

The following example shows the bugcheck dump:

***** Exception at xxxxxxxx : RDMS$$GEN_ROOM + 00000014
%COSI-F-BUGCHECK, internal consistency failure

The only workaround was to break the query into several smaller queries.

This problem has been corrected in V7.0. ♦

3.1.49 Bugcheck at RDMS$$EXE_CREATE_TTBL_FILE+5D Is Fixed

OpenVMS
VAX

In previous versions, a bugcheck at RDMS$$EXE_CREATE_TTBL_FILE+5D
was returned while evaluating constraints that required a temporary table on
OpenVMS VAX. On all platforms, there was a small memory leak that occurred
whenever a TTBL was used. Note that the leak was negligible—the query had to
run 40000 times before a megabyte would disappear.

This problem has been corrected in V7.0. ♦

3.1.50 File Error Messages During Query Execution Are Now Correct
In V6.1, file error messages were returned during query execution. This was
caused by a file system problem, resulting in file error messages that were
incomplete or incorrect, and that contained misleading extraneous text.

The following example shows a sample of the file error messages:

%RDB-F_IO_ERROR, input or output error
%NONAME-F-NOMSG, Message number 00000004

In this example, the problem was that the correct error message, which should
have followed the %RDB-F_IO_ERROR line, was omitted and the NOMSG line was
incorrectly added. In all known occurrences of this problem, the first error was
%RDB-F_IO_ERROR or %RDB-F-SYS_REQUEST. However, all cases of %RDB-F_IO_ERROR
or %RDB-F-SYS_REQUEST were not incorrect.

This problem has been corrected in V7.0.

3.1.51 Sort and Merge Routines Are No Longer Called in Incorrect Order
In previous versions, a query may have been terminated by an anticipatable
error such as a deadlock. Subsequent execution of the same query may have
been terminated with one of the following error messages because sort or merge
routines were called in incorrect order:

COSI$_SORT_ON, sort or merge routines called in incorrect order

SOR$_SORT_ON, sort or merge routines called in incorrect order

The workaround to this problem was to terminate the program and rerun it or, to
detach the database and reattach. This reexecuted the query without error.

Software Errors Fixed 3–21

This problem has been corrected in V7.0.

3.1.52 RDMS$BIND_WORK_VM Now May Be a Large Value
In previous versions, specifying a virtual memory (VM) value greater than 65,535
bytes for the RDMS$BIND_WORK_VM logical name may have produced incorrect
results for some queries. The RDMS$BIND_WORK_VM logical name permits you
to reduce the overhead of disk I/O for matching operations.

This problem has been corrected in V7.0. You can now set the VM allocated to
your process for use in matching operations to any reasonable large value.

3.1.53 VLDB Application Storage Areas No Longer Exhaust the Channel Limit
In previous versions, it was possible for the storage areas of a very large database
(VLDB) to exhaust the previous I/O channel limit of 4096 open channels per
database attach. The 4096 open channel limit was actually equivalent to only
2046 storage areas because of the corresponding snapshot areas. This problem
involved all interfaces.

The problem occurred most often when you tried to create a database containing
more than 2046 storage areas. However, it also occurred at runtime.

For V7.0 on OpenVMS Alpha and Digital UNIX, the maximum number of open
I/O channels has been increased from 4096 to 8192.

The new limit allows up to 4094 database storage areas, and their corresponding
snapshot areas, to be open simultaneously.

For V7.0 on OpenVMS VAX, the limit of open files has been increased to 2047.
This effectively removes the Oracle Rdb limit to the number of open files allowed
on OpenVMS VAX systems.

Note that the actual number of files that can be opened by a process on OpenVMS
is limited by the OpenVMS SYSGEN parameter CHANNELCNT and the
OpenVMS UAF parameter FILLM. Other process quotas and limits may also
limit the number of open files for a process.

3.1.54 Data Converted from TEXT to BIGINT (QUADWORD) No Longer Loses
Precision with Large Values

The database engine converts TEXT literals to BIGINT by using G_FLOAT as an
intermediate format. Prior to V6.1, precision was lost with large values (16-digit
precision or more) because the G_FLOAT data type has a limit of 15 decimal
digits precision, while a column of data type BIGINT can contain integers with
up to 18 decimal digits.

This problem has been corrected in V6.1 and higher.

3.1.55 Changes to TIMESTAMP Literal and Character Format
The SQL interface to Oracle Rdb implemented the SQL-92 date-time support in
Version 4.1. However, Version 4.1 of Oracle Rdb actually preceded the official
adoption of SQL-92 as the standard. The draft on which V4.1 SQL was based
defined the separator between the date and the time portion of the TIMESTAMP
literal string as a colon (:). However, the final version of the SQL-92 standard
changed this to a space.

In Oracle Rdb V7.0, the input TIMESTAMP format has been enhanced to accept
both the SQL-92 standard as well as the format previously accepted.

3–22 Software Errors Fixed

When a timestamp value is converted to CHAR or VARCHAR, such as when the
timestamp value displayed by the interactive SQL SELECT or PRINT statements,
SQL now displays it only in the SQL-92 format. The following example shows the
use of the old and new TIMESTAMP literal support:

SQL> SET DEFAULT DATE FORMAT ’SQL92’;
SQL>
SQL> CREATE TABLE T (a TIMESTAMP(2) DEFAULT TIMESTAMP’1995-1-1 12:34:10.01’,
cont> b INTEGER);
SQL> INSERT INTO t (b) VALUE (0);
1 row inserted
SQL> INSERT INTO T (b,a) VALUE (1, TIMESTAMP’1995-1-1:12:34:10.01’);
1 row inserted
SQL> INSERT INTO T (b,a) VALUE (2, TIMESTAMP’1995-1-1 12:34:10.01’);
1 row inserted
SQL> INSERT INTO T (b,a) VALUE (3, CAST(CAST(TIMESTAMP’1995-1-1:12:34:10.01’
cont> AS VARCHAR(30)) AS TIMESTAMP(2)));
1 row inserted
SQL> INSERT INTO T (b,a) VALUE (4, CAST(CAST(TIMESTAMP’1995-1-1 12:34:10.01’
cont> AS VARCHAR(30)) AS TIMESTAMP(2)));
1 row inserted
SQL> INSERT INTO T (b, a) VALUE (5, CURRENT_TIMESTAMP);
1 row inserted
SQL>
SQL> SELECT b, a, CAST(a AS CHAR(30)) FROM T ORDER BY b;

B A
0 1995-01-01 12:34:10.01 1995-01-01 12:34:10.01
1 1995-01-01 12:34:10.01 1995-01-01 12:34:10.01
2 1995-01-01 12:34:10.01 1995-01-01 12:34:10.01
3 1995-01-01 12:34:10.01 1995-01-01 12:34:10.01
4 1995-01-01 12:34:10.01 1995-01-01 12:34:10.01
5 1995-06-26 16:12:08.95 1995-06-26 16:12:08.95

6 rows selected
SQL>
SQL> CREATE DOMAIN TEXT_BUFF CHAR(30);
SQL>
SQL> BEGIN
cont> DECLARE :X TEXT_BUFF;
cont> SET :X = CAST(CURRENT_TIMESTAMP AS TEXT_BUFF);
cont> TRACE :X;
cont> END;
~Xt: 1995-06-26 16:12:09.11
SQL>

This enhancement should have little or no impact on your applications. Oracle
Rdb continues indefinitely to support the non-standard TIMESTAMP format.
This change may affect applications that parse the formatted TIMESTAMP
values, if these applications (or routines) expect a separating colon. The
applications should be modified to accept either a space or a colon. This change
may also affect the RMU Unload and RMU Load commands that use delimited
flat files with a space character as a delimiter. If possible, use quoting around the
data values in the delimited format to avoid ambiguity.

3.1.56 External Functions Now Produce Valid Descriptor Lengths

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, use of an external function to process CHAR parameters by
descriptor sometimes produced invalid descriptor lengths in the external function
routine.

When the length of the source expression exceeded the size of the declared
external function parameter, Oracle Rdb incorrectly passed the actual expression
length instead of limiting the length to that of the format routine parameter.
Only when the source is shorter than the function parameter should Oracle Rdb
modify the descriptor length.

Software Errors Fixed 3–23

The workaround to this problem was to use the built-in CAST function, which
converts a value expression to another type of data, to restrict the size of the
input expressions to the size of the external function parameter. The following is
an example of the workaround:

SQL> -- Use a domain for consistent usage.
SQL> CREATE DOMAIN text_buffer CHAR(10);
SQL> -- Create a function using the domain.
SQL> CREATE FUNCTION mytest (text_buffer BY DESCRIPTOR)
cont> RETURNS INTEGER BY VALUE;
cont> EXTERNAL LOCATION ’mytest.exe’
cont> LANGUAGE GENERAL
cont> GENERAL PARAMETER STYLE;
cont> -- When calling the function, use CAST to limit the size. Use the
cont> -- domain to guarantee the same size data as required for the function.
SQL> SELECT mytest(CAST(JOB_TITLE AS text_buffer)) FROM JOBS LIMIT TO 1 ROW;

This problem has been corrected in V7.0. The descriptor length is limited to
the range 0 to the size of the function CHAR parameter. The following example
shows the function MYTEST, which simply prints the length as passed in the
string descriptor:

SQL> ATTACH ’FILENAME personnel’;
SQL> CREATE FUNCTION mytest (CHAR (10) BY DESCRIPTOR
cont> RETURNS INTEGER BY VALUE;
cont> EXTERNAL LOCATION ’mytest.exe’
cont> LANGUAGE GENERAL
cont> GENERAL PARAMETER STYLE;
SQL>
SQL> SHOW ALL DOMAINS job_title;
JOB_TITLE CHAR(20)
Comment: Generic job title
Missing Value: None
SQL> SELECT job_title FROM JOBS
cont> WHERE job_title STARTING WITH ’Dept’ OR
cont> job_title STARTING WITH ’Assoc’;
JOB_TITLE
Associate Programmer
Dept. Supervisor
2 rows selected
SQL>
SQL> SELECT mytest(job_title) FROM JOBS
cont> WHERE job_title STARTING WITH ’Dept’ OR
cont> job_title STARTING WITH ’Assoc’;

10
10

2 rows selected
SQL>
SQL> SELECT mytest(CAST(job_title AS CHAR(40000)))
cont> FROM JOBS LIMIT TO 1 ROW;

10
1 row selected
SQL>
SQL> SELECT mytest(CAST(job_title AS CHAR(10)))
cont> FROM JOBS LIMIT TO 1 ROW;

10
1 row selected
SQL>
SQL> SELECT mytest(CAST(job_title AS CHAR(5)))
cont> FROM JOBS LIMIT TO 1 ROW;

5
1 row selected

3–24 Software Errors Fixed

SQL>
SQL> SELECT mytest(CAST(job_title AS CHAR(0)))
cont> FROM JOBS LIMIT TO 1 ROW;

0
1 row selected

♦

3.1.57 SPAM Page Search Algorithm Is Now Optimized
In previous versions, the space area management (SPAM) page search algorithm
was not optimized to prevent excessive searching of the storage area.

This problem occurred more frequently under the following circumstances:

• The number of users attached to the database was large.

• The number of buffers allocated to each user was large.

• The SPAM page interval was large.

• Mixed page format storage areas for hashed indexes were used, particularly
when the hashed indexes were close to the fullness threshold.

However, even in databases that did not have these attributes, excessive
searching of the storage area did occur.

Although there was no certain workaround, there were a number of adjustments
that could have minimized the problem, including the following:

• Increase the allocation size of the affected storage area.

• Decrease the SPAM page interval.

• Reduce the number of buffers per user.

This problem has been corrected in V7.0. The SPAM page search algorithm has
been optimized to prevent excessive searching of the storage area.

3.1.58 RDMS$BIND_SEGMENTED_STRING_COUNT or
RDB_BIND_SEGMENTED_STRING_COUNT No Longer Causes
VM Corruption

In previous versions, using the logical name RDMS$BIND_SEGMENTED_
STRING_COUNT or the configuration parameter RDB_BIND_SEGMENTED_
STRING_COUNT sometimes led to virtual memory corruption which could have
led to unexpected bugcheck dumps from Oracle Rdb.

Oracle Rdb uses this logical name or configuration parameter to preallocate data
structures when processing tables with many segmented strings. Oracle Rdb was
allocating only enough space for 80% of the count. The algorithm was using the
wrong structure size. As a result, after the allocated 80% was used, all future
references wrote on memory allocated for other uses.

The workaround was to increase the value of the logical name or configuration
parameter so that the top 20% of the buffer was not used, or to avoid using this
logical name.

This problem is corrected in V7.0.

Software Errors Fixed 3–25

3.1.59 DEC MMS and CDD/Repository Report EXEDELPROC

OpenVMS
VAX

OpenVMS
Alpha

DEC MMS, when used with Oracle CDD/Repository, gave the error
"EXEDELPROC, Subprocess terminated abnormally." This is a problem in
DEC MMS, which a change to Oracle Rdb recently uncovered. A change in Oracle
Rdb V6.0A ECO 4 and V6.1 ECO 3 made the problem visible.

Oracle Rdb has been modified in V7.0 so that it does not expose the bug in DEC
MMS. ♦

3.2 SQL Errors Fixed
This section describes problems that have been fixed in the SQL interface.

3.2.1 LIBSQL Naming Confl ict Corrected
Digital UNIX The Oracle Rdb installation creates a symbolic link from the /usr/lib/libsql.so file

to the shared object libsql.so, which is used in link commands for SQL module
processor and SQL precompiler applications. A conflict can occur when more
than one SQL product is installed on the same UNIX machine. If two products,
such as Oracle Rdb and Oracle7, have been installed on the same Digital UNIX
machine and both products contain a libsql.so file, the most recent installation
resets the link to its libsql.so file.

This problem has been corrected in V7.0. To resolve this problem, Oracle Rdb
changed the link to librdbsql.so. That is, /usr/shlib/librdbsql.so is a link to the
libsql.so file in the Oracle Rdb path.

If you have applications from previous versions that include –lsql in the link
command, you should change –lsql to –lrdbsql for Oracle Rdb SQL applications.
♦

3.2.2 Full Outer Join with Derived Tables and IS NULL Predicate No Longer
Returns Incorrect Results

In previous versions, a full outer join with derived tables and the IS NULL
predicate sometimes returned incorrect results, as shown in the following
example:

-- Create sample database and load some records.
--
CREATE DATA FILE FOO;
CREATE TABLE A
(A1 CHAR(10),
A2 CHAR(10));

CREATE TABLE B
(B1 CHAR(10),
B2 CHAR(10));

INSERT INTO A (A1,A2) VALUES (’row1’,’a1 row1’);
INSERT INTO A (A1,A2) VALUES (’row2’,’a1 row2’);
INSERT INTO A (A2) VALUES (’a1 null’);
INSERT INTO B (B1,B2) VALUES (’row2’,’b1 row2’);
INSERT INTO B (B1,B2) VALUES (’row1’,’b1 row1’);
INSERT INTO B (B2) VALUES (’b1 null’);
COMMIT;

3–26 Software Errors Fixed

--
-- Display contents of table A.
--
SELECT * FROM A;
A1 A2
row1 a1 row1
row2 a1 row2
NULL a1 null
3 rows selected
--
-- Display contents of table B.
--
SELECT * FROM B;
B1 B2
row2 b1 row2
row1 b1 row1
NULL b1 null
3 rows selected
--
-- Display contents of a full outer join with derived tables.
--
SELECT A.A1, A.A2, B.B1, B.B2 FROM

(SELECT * FROM A) A
FULL OUTER JOIN
(SELECT * FROM B) B
ON B.B1 = A.A1;

A.A1 A.A2 B.B1 B.B2
row1 a1 row1 row1 b1 row1
row2 a1 row2 row2 b1 row2
NULL NULL NULL b1 null
NULL a1 null NULL NULL
4 rows selected
--
-- Display the result of the query where A1 is null.
-- ** Do not get expected result
-- and a conjunct is at the wrong place. **
--
SELECT A.A1, A.A2, B.B1, B.B2 FROM

(SELECT * FROM A) A
FULL OUTER JOIN
(SELECT * FROM B) B
ON B.B1 = A.A1

WHERE A1 IS NULL;
Match (Full Outer Join)
Outer loop
Sort
Merge of 1 entries
Merge block entry 1
Conjunct Get Retrieval sequentially of relation A

-----THIS CONJUNCT IS NOT CORRECT
Inner loop
Temporary relation Sort
Merge of 1 entries
Merge block entry 1
Get Retrieval sequentially of relation B

A.A1 A.A2 B.B1 B.B2
NULL NULL row1 b1 row1
NULL NULL row2 b1 row2
NULL NULL NULL b1 null
NULL a1 null NULL NULL
4 rows selected

Software Errors Fixed 3–27

The IS NULL predicate in the WHERE clause was pushed down below the
full outer join and caused the query to return wrong results (see the conjunct
highlighted in the preceding example). This predicate should have been applied
on top of the full outer join.

This problem has been corrected in V7.0.

3.2.3 Assignment Statement No Longer Uses Incorrect Value for
CURRENT_TIMESTAMP

In previous versions, Oracle Rdb, in some cases, incorrectly processed assignment
(SET) statements in multistatement and stored procedures that referred to
the date/time functions CURRENT_TIME, CURRENT_DATE, and CURRENT_
TIMESTAMP.

Oracle Rdb used the time, date or timestamp of the procedure start instead of the
date and time of the current statement. This problem was only seen when SET
statements occurred at the end of a compound statement.

Other statements, such as TRACE, INSERT, SELECT, UPDATE, and subqueries
in conditional statements were not affected by this problem.

This problem has been corrected in V7.0.

3.2.4 COMPUTED BY Column Value Now Returned Correctly
In previous versions, references to the value of a COMPUTED BY column that
contained a subquery (SELECT expression) sometimes returned the wrong result.

This problem occurred in the following situations:

• In a FOR loop or singleton SELECT within an outer FOR loop.

The reference to the COMPUTED BY column from a table in the outer FOR
loop returned the wrong result.

The following example shows the problem for two nested FOR loops in a
multistatement procedure. The inner FOR loop fetches zero rows on the first
iteration of the outer loop, when it should fetch a single matching row. The
value fetched on the second iteration is the value expected during the first
iteration.

3–28 Software Errors Fixed

SQL> set flags ’TRACE’;
SQL>
SQL> create table FCOL_1 (a int, b int);
SQL> insert into FCOL_1 (a, b) values (1, 100);
1 row inserted
SQL> insert into FCOL_1 (a, b) values (2, 200);
1 row inserted
SQL>
SQL> create table FCOL_2 (a int, c computed by (select f.b
cont> from FCOL_1 f
cont> where FCOL_2.a = f.a));
SQL> insert into FCOL_2 (a) value (1);
1 row inserted
SQL> insert into FCOL_2 (a) value (2);
1 row inserted
SQL>
SQL> create table FCOL_3 (a int, d int);
SQL> insert into FCOL_3 (a, d) value (100, -100);
1 row inserted
SQL> insert into FCOL_3 (a, d) value (200, -200);
1 row inserted
SQL>
SQL> begin
cont> for :a as
cont> select a, c
cont> from FCOL_2
cont> do
cont> begin
cont> declare :x int = :a.c;
cont> trace ’------ :a.A ’, :a.a, ’ :a.C ’, :a.c;
cont> for :b as
cont> select d
cont> from FCOL_3
cont> where a = :a.c
cont> do
cont> trace ’:b.D ’, :b.d;
cont> end for;
cont> end;
cont> end for;
cont> end;
~Xt: ------ :a.A 1 :a.C 100
~Xt: ------ :a.A 2 :a.C 200
~Xt: :b.D -100

The expected result was "~Xt: :b.D -100" for the first iteration, and
"~Xt: :b.D -200" for the second iteration of the loop.

• Using an AFTER INSERT or AFTER UPDATE trigger that referred to a
COMPUTED BY column in the triggering table.

The following example shows that the value inserted by the AFTER INSERT
trigger is incorrect:

SQL> CREATE TABLE INTERMEDIATE (FLD1 CHAR(10));
SQL> CREATE TABLE TRIGGER_RESULT (FLD1 CHAR(10));
SQL> CREATE TABLE TEST_COMPUTED
cont> (FLD1 CHAR(10),
cont> FLD2 COMPUTED BY (SELECT FLD1
cont> FROM INTERMEDIATE
cont> LIMIT TO 1 ROW));
SQL> INSERT INTO INTERMEDIATE VALUES (’string1’);
1 row inserted
SQL> SELECT * FROM TEST_COMPUTED;
0 rows selected
SQL> INSERT INTO TEST_COMPUTED (FLD1) VALUES (’string2’);
1 row inserted

Software Errors Fixed 3–29

SQL> SELECT * FROM TEST_COMPUTED;
FLD1 FLD2
string2 string1
1 row selected
SQL> CREATE TRIGGER TEST_COMPUTED_TRIGGER
cont> AFTER INSERT ON TEST_COMPUTED
cont> (INSERT INTO TRIGGER_RESULT (FLD1)
cont> VALUES (TEST_COMPUTED.FLD2))
cont> FOR EACH ROW;
SQL> INSERT INTO TEST_COMPUTED (FLD1) VALUES (’string3’);
1 row inserted
SQL> SELECT * FROM TRIGGER_RESULT;
FLD1
..........
1 row selected
SQL> rollback;

The expected value in the table TRIGGER_RESULT was ‘‘string1’’. The value
displayed by interactive SQL indicates that the string contains unprintable
characters.

This problem has been corrected in V7.0.

3.2.5 Computed By Column Now Set to Null During DROP TABLE CASCADE
In previous versions, a DROP TABLE CASCADE statement failed if the table
being dropped was referred to in a COMPUTED BY column in another table.

In V7.0, Oracle Rdb sets the COMPUTED BY column to NULL if it refers to
a table that has been deleted by a DROP TABLE CASCADE statement. For
example:

SQL> CREATE TABLE t1 (col1 INTEGER,
cont> col2 INTEGER);
SQL> --
SQL> CREATE TABLE t2 (x INTEGER,
cont> y COMPUTED BY (SELECT COUNT(*) FROM
cont> t1 WHERE t1.col1 = t2.x));
SQL> --
SQL> -- Assume values have been inserted into the tables.
SQL> --
SQL> SELECT * FROM t1;

COL1 COL2
1 100
1 101
1 102
2 200
3 300

5 rows selected
SQL> SELECT * FROM t2;

X Y
1 3
3 1

2 rows selected
SQL> --
SQL> DROP TABLE t1 CASCADE;
Computed Column Y in table T2 is being set to NULL.
SQL> SELECT * FROM t2;

X Y
1 NULL
3 NULL

You can alter the table and drop the COMPUTED BY column. You can later alter
the table to create a new COMPUTED BY column of the same name which has a
different computed expression.

3–30 Software Errors Fixed

3.2.6 Unexpected RDMS-F-BAD_SYM Error When Referring to COMPUTED BY
Columns Fixed

In previous versions, you could have received an RDMS-F-BAD_SYM error when
you accessed a table that referenced views through COMPUTED BY columns.
You could have avoided the error by changing the query to reverse the order of
the columns selected, as shown in the following example:

SQL> CREATE TABLE t (A INTEGER);
SQL> INSERT INTO t VALUES (1);
1 row inserted
SQL> INSERT INTO t VALUES (2);
1 row inserted
SQL> CREATE VIEW v AS SELECT A FROM T;
SQL> CREATE TABLE s (A INTEGER,
cont> B COMPUTED BY (SELECT MIN(A) FROM v),
cont> C COMPUTED BY (SELECT AVG(A) FROM v)
cont>);
SQL> INSERT INTO s (A) VALUES (1);
1 row inserted
SQL>
SQL> SELECT B, C FROM s;
%RDB-E-OBSOLETE_METADA, request references metadata objects that no longer exist
-RDMS-F-BAD_SYM, unknown field symbol - C
SQL> SELECT C, B FROM s;

C B
1.500000000000000E+000 1

1 row selected
SQL> rollback;

This problem was caused by Oracle Rdb trying to find the referenced column in
the view, instead of the table referenced in the query. If the view contained a
column of the same name, incorrect results could also be observed.

For this problem to occur, the following unusual characteristics must have been
used together:

• The table contained at least two COMPUTED BY columns.

• At least one of these computed by columns was a subquery.

• The subquery referenced a view table.

• The COMPUTED BY column that referenced the view through a subquery
was fetched before any other computed by column in the select list.

The only workaround for this problem was to change the column selection order.
That is, select the first COMPUTED BY column which meets the characteristics
listed as the last in the selection list.

This problem has been corrected in Oracle Rdb V7.0.

3.2.7 FETCH No Longer Returns End-Of-Stream Condition on NO_RECORD
In previous versions, a NO_RECORD condition returned from Oracle Rdb during
a FETCH operation was translated to an End-Of-Stream condition. This was
incorrect. This problem has been corrected in V7.0. The SQL behavior has been
changed so that an UDCURDEL exception is now raised.

Software Errors Fixed 3–31

3.2.8 OUT Parameters Now Accessible with TRACE Statement
In previous versions, you could not use the TRACE statement to trace the
contents of an OUT parameter. Only parameters with modes IN or INOUT could
appear in a TRACE statement. Attempts to use an OUT parameter directly
or within an expression resulted in the error which is shown in the following
example:

SQL> CREATE MODULE M1
cont> LANGUAGE SQL
cont> PROCEDURE P1 (IN :A INTEGER, OUT :B REAL);
cont> BEGIN
cont> SET :B = :A;
cont> TRACE :A, :B;
cont> END;
cont> END MODULE;
%SQL-F-NOTINPARAM, Parameter B is referenced as an IN parameter, but
declared as OUT

This restriction has been lifted in V7.0. You can use an OUT parameter in a
TRACE statement, as shown in the following example. Please note that in all
other statements, an OUT parameter must be the target for an assignment, never
a source.

SQL> CREATE MODULE M1
cont> LANGUAGE SQL
cont> PROCEDURE P1 (IN :A INTEGER, OUT :B REAL);
cont> BEGIN
cont> SET :B = :A;
cont> TRACE :A, :B;
cont> END;
cont> END MODULE;
SQL>
SQL> SET FLAGS ’TRACE’;
SQL> DECLARE :RES REAL;
SQL> CALL P1 (10, :RES);
~Xt: 10 1.0000000E+01

RES
1.0000000E+01

SQL>

3.2.9 Enhanced Support for Views by ALTER DOMAIN and ALTER TABLE
Statements

In previous versions, if you modified a domain or a column of a table, a dependent
view was left as it was originally defined. That is, its dependent columns retained
the data type of the column as it was defined when the view was initially created.

As a result, changes to the table (either directly with ALTER TABLE . . . ALTER
COLUMN, or indirectly with ALTER DOMAIN) were not reflected in the view
definition. You had to drop the view definition and re-create it to inherit these
changes.

The following changes in Oracle Rdb correct this behavior:

• ALTER DOMAIN

When you modify a domain, its attributes are automatically propagated to all
referencing tables and views. In previous versions, only referencing tables
inherited all the changed attributes.

3–32 Software Errors Fixed

For example, if you modify the data type of a domain, Oracle Rdb updates
any view column that refers to that domain, directly or indirectly, to reflect
the new attributes of that domain. (A view column can refer indirectly to a
domain by using an expression that refers to a base table’s column which uses
that domain.)

• ALTER TABLE . . . ALTER COLUMN

When you modify the data type or domain of a column, Oracle Rdb
automatically propagated those attributes to all referencing views. In
previous versions, views did not inherit the changed attributes.

For example, if you modify a column to refer to a domain for its data type,
any view column which refers to that column directly is updated to reflect the
new attributes of the modified column.

SQL> CREATE DOMAIN d CHAR(1);
SQL> CREATE TABLE T (A d);
SQL> CREATE VIEW V (B,C) AS SELECT A, A||’X’ FROM T;
SQL> SHOW VIEW (COL) V;
Information for table V

Columns for view V:
Column Name Data Type Domain
----------- --------- ------
B CHAR(1)
C CHAR(2)
SQL> ALTER DOMAIN d CHAR(5);
SQL> SHOW VIEW (COL) v;
Information for table V

Columns for view V:
Column Name Data Type Domain
----------- --------- ------
B CHAR(5)
C CHAR(6)

In previous versions, the character length remained as CHAR(2) for column C in
view V. In V7.0, column C correctly reflects a data type of CHAR(6). The previous
workaround to this problem was to drop the dependent view and re-create it.

3.2.10 Reserved Tables No Longer Removed from Reserving List After ALTER
INDEX

In previous versions, when you specified a table in the RESERVING clause of the
SET TRANSACTION statement, statements sometimes could not access the table
after an index was altered. For example:

SQL> SET TRANSACTION READ WRITE RESERVING TEST FOR EXCLUSIVE WRITE;
SQL> ALTER INDEX TEST_HSH STORE IN TEST2;
SQL> ALTER STORAGE MAP TEST_MAP
cont> STORE IN TEST2;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-UNRES_REL, relation TEST in specified request is not a relation reserved
in specified transaction

This error occurred because the table reloaded code for the ALTER INDEX
statement (the statement prior to the error). After the index was altered, Oracle
Rdb loaded a new version of the tables, but it did not propagate the indication
that this table was specified in a RESERVING clause. This has been corrected in
V7.0.

Software Errors Fixed 3–33

3.2.11 CREATE TRIGGER or CREATE MODULE Statement No Longer
Generates Unexpected SEGTOOBIG Error

In previous versions, some CREATE statements (usually CREATE TRIGGER or
CREATE MODULE) failed with the following error:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-F-IMP_EXC, facility-specific limit exceeded
-RDMS-E-SEGTOOBIG, segmented string segment exceeds maximum allowed size

When a trigger, module, view, or constraint object is created, Oracle Rdb stores
the original SQL source along with an internal representation (known as BLR).
The BLR representation is usually much more compact than the original source.

The failure described here usually occurred because the SQL source exceeded an
internal limit imposed by previous versions. Namely, the maximum source length
was restricted to 65535 bytes (the largest value for an unsigned word (16 bits)).
This limitation has been removed in Oracle Rdb V7.0. The lengths of sources and
comments are now limited to 4294967295 bytes (an unsigned longword (32 bits)).

In V6.0 and V6.1, the limit was usually applied by truncating the SQL source
string to 65535 bytes before storage. Unfortunately, there is also some record
storage system overhead that needs to be counted. Therefore, the correct
truncation should have been something less than 65535. The actual length
depends on the current setting of the RDMS$USE_OLD_SEGMENTED_STRING
logical name, which changes the layout used by the record storage system.

Note that truncating the SQL source did not affect the correct behavior of the
trigger or other object. You could use the RMU Extract command to extract large
triggers, translating the BLR representation into SQL.

The workaround for this problem was often as simple as trimming trailing spaces
and replacing leading spaces with TAB characters (for the same formatting affect)
or reducing the number of lines of SQL source used to define the object.

V7.0 removes this restriction.

3.2.12 GET DIAGNOSTICS Statement Now Processed Correctly
In previous versions, Oracle Rdb processed the GET DIAGNOSTICS statement
incorrectly if it appeared with other assignment statements in a compound
statement. The results of the GET DIAGNOSTICS statement were made
available after the SET statements. If the SET statements expected to use the
result of the GET DIAGNOSTICS statement, incorrect results were observed.
This error only occurred when you used SET DIALECT ’SQL92’.

The following example shows that the TOT variable was not correctly updated
during execution of the compound statement:

SQL> SET DIALECT ’sql92’;
SQL> ATTACH ’filename your’;
SQL> DECLARE :TOT INT;
SQL> DECLARE :RC INT;

3–34 Software Errors Fixed

SQL> BEGIN
cont> SET :TOT = 100;
cont> SET :RC = 0;
cont> FOR :C AS EACH ROW OF SELECT k,d FROM t
cont> DO
cont> DELETE FROM t WHERE k = :c.k;
cont> GET DIAGNOSTICS :RC = row_count;
cont> SET :TOT = :rc;
cont> END FOR;
cont> END;
SQL> PRINT :TOT, :RC;

TOT RC
0 1

This problem was the result of an optimization for SELECT statement column
assignments that was incorrectly applied to SET statements in a compound
statement. The optimization always placed the GET DIAGNOSTICS code at the
end of the assignment list, which is important when detecting NULL elimination
during aggregate processing of a SELECT statement.

A workaround was to follow the GET DIAGNOSTICS statement with another
statement (other than a SET or a GET DIAGNOSTICS statement). This caused
the optimization to be disabled and the correct results were reported.

This problem has been corrected in V7.0.

3.2.13 RETURNED_SQLSTATE and RETURNED_SQLCODE No Longer
Incorrect After COMMIT, ROLLBACK, and SET TRANSACTION
Statements

In previous versions, the SET TRANSACTION, COMMIT, and ROLLBACK
statements within a compound statement did not reset SQLCODE during
execution. Therefore, a GET DIAGNOSTICS statement that retrieved the
RETURNED_SQLCODE or RETURNED_SQLSTATE after these statements
sometimes reported the result of a previous INSERT, UPDATE, SELECT, or
DELETE statement.

This problem has been corrected in V7.0. Now, SQLSTATE and SQLCODE are
returned with success values regardless of the status of the statement before the
COMMIT, ROLLBACK, or SET TRANSACTION.

3.2.14 Queries with Expressions Containing Variables No Longer Return
Wrong Results

In previous versions, because of early evaluation of queries that contained
expressions that in turn contained variables, Oracle Rdb returned a wrong result
the first time the query ran. The result was correct for subsequent iterations.
The following shows an example that generated a wrong result:

SELECT COUNT(*) INTO :y FROM t1,t2
WHERE t1.f1 = (:x * 10)

AND t1.f1= t2.f1;

Using query outlines to change the strategy was a workaround to the problem.

This problem has been corrected in V7.0 by using lazy expression evaluation
instead of early expression evaluation. As a result, the expression containing
the host variable is evaluated at the time when its computed value is needed to
evaluate the selection predicate.

Software Errors Fixed 3–35

3.2.15 Invalid DATE and TIMESTAMP Literals No Longer Accepted
In previous versions, Oracle Rdb did not check the DATE or TIMESTAMP literal
format correctly in some cases and allowed invalid and misleading dates or
timestamps to be stored in the database. The following shows some examples:

SQL> SELECT DATE ’0000-00-00’ FROM RDB$DATABASE;

1858-11-17
1 row selected
SQL>
SQL> SELECT DATE ’0000-00-01’ FROM RDB$DATABASE;

0000-00-01
1 row selected
SQL>
SQL> SELECT TIMESTAMP ’0000-00-00 00:00:00.01’ FROM RDB$DATABASE;

0000-00-00 00:00:00.01
1 row selected

This problem has been corrected in V7.0. Literals of type DATE or TIMESTAMP
cannot have the year, or month or day set to zero.

3.2.16 Searched Update and Searched Delete Statements No Longer Promote
Locks Excessively

In V6.0 and V6.1, searched UPDATE and searched DELETE statements in SQL
performed excessive lock promotions on rows fetched for update or delete. This
was not the case with previous versions such as V4.2 or V5.1.

Oracle Rdb V6.0 reverted to fetching rows for SHARED READ and then
promoting the locks to EXCLUSIVE WRITE. This change in behavior could
have resulted in reported deadlocks when none were expected, and certainly led
to higher CPU usage than expected.

Workarounds to this problem included using the RESERVING clause to lock the
table at a higher mode, or using an UPDATE ONLY table cursor to fetch the rows
and using the UPDATE . . . WHERE CURRENT OF or DELETE . . . WHERE
CURRENT OF syntax to perform the update or delete operation.

This problem has been corrected in Oracle Rdb V7.0. The searched UPDATE and
searched DELETE statements now fetch rows with an EXCLUSIVE WRITE lock.
The result is fewer lock promotions, and thus better deadlock avoidance.

3.2.17 Single Area WITH LIMIT Storage Map Now Used Correctly
In previous versions, simple storage maps with a single storage area and
STORE USING . . . WITH LIMIT syntax were not handled correctly. Oracle Rdb
erroneously assumed that a single area meant that the map had no WITH LIMIT
clause.

The insert operation in the following example succeeded even though the value is
outside the map limit:

CREATE TABLE TEST_LIMIT(CHAR1 CHAR(5), CHAR2 CHAR(5));

CREATE STORAGE MAP LIMIT_MAP
FOR TEST_LIMIT STORE USING (CHAR1)

IN "TEST" WITH LIMIT OF (’m’);

INSERT INTO TEST_LIMIT(CHAR1) VALUES(’n’) RETURNING DBKEY;

3–36 Software Errors Fixed

This problem has been corrected in V7.0. When you omit the OTHERWISE
clause from a storage map definition, Oracle Rdb uses the WITH LIMIT clause to
restrict the values inserted into the table, even for storage maps with one storage
area.

3.2.18 ALTER STORAGE MAP Now Lets You Remove the USING Column
In previous versions, if you created a storage map to partition on a particular
column in the table, but later wanted to remove the column from the table, Oracle
Rdb returned errors.

The following example shows this previous, incorrect behavior:

SQL> CREATE STORAGE MAP TEST_STORAGE_MAP for TEST_TABLE
cont> USING (TEST_COLUMN)
cont> WITH LIMIT OF (100) in TEST_STORAGE_AREA_A
cont> OTHERWISE IN TEST_STORAGE_AREA_B;
SQL>
SQL> ALTER STORAGE MAP TEST_STORAGE_MAP
cont> STORE IN TEST_STORAGE_AREA_A
cont> REORGANIZE AREAS;
SQL>
SQL> ALTER TABLE TEST_TABLE DROP TEST_COLUMN;
-RDMS-F-FLDINSTO, field TEST_COLUMN is referenced in storage map
TEST_STORAGE_MAP
-RDMS-F-RELFLDNOD, field TEST_COLUMN has not been deleted from relation
TEST_TABLE

This problem has been corrected in Oracle Rdb V7.0.

3.2.19 Unexpected UNRES_REL Error No Longer Occurs When Reserving
Views

In previous versions, Oracle Rdb did not correctly reserve some complex
views when they were used in the RESERVING clause of DECLARE or SET
TRANSACTION statements.

When a view is reserved, Oracle Rdb propagates the RESERVING clause
to all base tables to which the view refers. If a view in a column subquery
expression referred to a table, the table was reserved correctly only during the
first transaction.

The following query shows the problem. The base table, T_CODES, is referenced
by a view used in a subquery within the reserved view, V_TESTVIEW_3.

SQL> SET TRANSACTION READ ONLY RESERVING V_TESTVIEW_3 FOR SHARED READ;
SQL> SELECT * FROM V_TESTVIEW_3;
VIEW_VALUE VIEW_DESCRIPTION
A character A
1 row selected
SQL> COMMIT;
SQL>
SQL> SET TRANSACTION READ ONLY RESERVING V_TESTVIEW_3 FOR SHARED READ;
SQL> SELECT * FROM V_TESTVIEW_3;
%RDB-E-UNRES_REL, relation T_CODES in specified request is not a relation
reserved in specified transaction
SQL> COMMIT;

This problem has been corrected V7.0. Oracle Rdb now correctly reserves base
tables to which reserved views refer.

Software Errors Fixed 3–37

3.2.20 Initialize Handles and External Globals Command Line Qualifiers
Processed Correctly

The command line qualifiers that control initializing alias handles were not
processed correctly in V6.1. You specify these options with precompiled SQL and
SQL module language as follows:

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS:

$ SQLPRE /SQLOPT=(INITIALIZE_HANDLES,EXTERNAL_GLOBALS)
$ SQLMOD /INITIALIZE_HANDLES /EXTERNAL_GLOBALS ♦

Digital UNIX On Digital UNIX:

% sqlpre -s ’-init -extern’
% sqlmod -init -extern ♦

These options can be negated (disabled) by preceding them with ‘‘no’’.

When the INITIALIZE_HANDLES or –init option is enabled, SQL should
initialize the alias handle for each alias definition (an alias declared with a
DECLARE ALIAS statement that does not specify the EXTERNAL keyword).
When disabled, SQL should not initialize alias handles. The INITIALIZE_
HANDLES and –init option was supposed to be enabled by default and was
to take precedence over the EXTERNAL_GLOBALS or –extern option if any
combination of the two were simultaneously specified.

When the EXTERNAL_GLOBALS or –extern option is enabled, SQL should treat
an alias reference (an alias declared with a DECLARE ALIAS statement that
specifies the EXTERNAL keyword) as an alias definition. As such, the alias
handle was supposed to be initialized in the same way as the handle of an alias
definition. The EXTERNAL_GLOBALS option was supposed to be enabled by
default on OpenVMS platforms for compatibility with previous versions, and
disabled by default on Digital UNIX platforms.

V6.1 erroneously processed the EXTERNAL_GLOBALS or –extern option: only
aliases declared without the LOCAL, EXTERNAL, or GLOBAL keywords were
affected. The alias handles of such aliases were not initialized, while the alias
handles for LOCAL, EXTERNAL and GLOBAL aliases were initialized when the
EXTERNAL_GLOBALS or –extern option was enabled. When the EXTERNAL_
GLOBALS or –extern option was disabled, all alias handles were initialized.
Moreover, V6.1 erroneously treated the negation of the INITIALIZE_HANDLES
or –init option as though the EXTERNAL_GLOBALS or –extern option was
enabled.

The following series of examples shows the described problems.

Assume that the following statements are included in an SQL precompiled
program EXAMPLE.SC:

DECLARE DEFAULT_ALIAS ALIAS FOR FILENAME ’PERSONNEL’;
DECLARE LOCAL_ALIAS LOCAL ALIAS FOR FILENAME ’PERSONNEL’;
DECLARE EXTERNAL_ALIAS EXTERNAL ALIAS FOR FILENAME ’PERSONNEL’;
DECLARE GLOBAL_ALIAS GLOBAL ALIAS FOR FILENAME ’PERSONNEL’;

3–38 Software Errors Fixed

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, on OpenVMS, if you used the following command, the alias
handles for LOCAL_ALIAS, EXTERNAL_ALIAS and GLOBAL_ALIAS were
initialized, but they should not have been:

$ SQLPRE/CC EXAMPLE.SC /SQLOPT=NOINITIALIZE_HANDLES

If you used the following command, the alias handle for EXTERNAL_ALIAS was
initialized, but should not have been:

$ SQLPRE/CC EXAMPLE.SC /SQLOPT=NOEXTERNAL_GLOBALS

If you used the following command, the alias handle for DEFAULT_ALIAS was
not initialized, but should have been:

$ SQLPRE/CC EXAMPLE.SC /SQLOPT=EXTERNAL_GLOBALS ♦

Digital UNIX On Digital UNIX, if you used the following command, the alias handles for
LOCAL_ALIAS, EXTERNAL_ALIAS and GLOBAL_ALIAS were initialized, but
they should not have been:

sqlpre -l cc EXAMPLE.SC -s ’-noinit’

If you used the following command, the alias handle for EXTERNAL_ALIAS was
initialized, but should not have been:

sqlpre -l cc EXAMPLE.SC -s ’-noextern’

If you used the following command, the alias handle for DEFAULT_ALIAS was
not initialized, but should have been:

sqlpre -l cc EXAMPLE.SC -s ’-extern’ ♦

These problems have been corrected in Oracle Rdb 7.0.

3.2.21 SQL Precompiler Now Consistent for C and COBOL Symbolic
Debugging

Digital UNIX For applications running on Digital UNIX, the SQL precompiler previously
compiled C and COBOL source language files inconsistently regarding symbolic
debugging.

By default, C language source files were compiled for full symbolic debugging,
including suppression of any optimizations that would limit full symbolic
debugging; COBOL language source files were compiled without producing
symbol table information for symbolic debugging. This inconsistency is corrected
in V7.0. By default, both C and COBOL source files are compiled without
producing symbol table information for symbolic debugging.

3.2.22 Bugcheck Creating Complex Views Fixed

OpenVMS
Alpha

In previous versions, when creating a complex view, two bugchecks could have
occurred: an RDSBUGCHK and an SQLBUGCHK. This situation only occurred
on the OpenVMS Alpha platform and occurred in one of the routines for allocating
memory. The following example shows exceptions that could have occurred:

---- RDSBUGCHK.DMP;1

***** Exception at 00CCF84C : RDMS$$COMPILE_STMT + 0000A68C
%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual address=00000144,
PC=00CCF84C, PS=0000000B

---- SQLBUGCHK.DMP;1

Software Errors Fixed 3–39

***** Exception at 000D1854 : AMAC_FLT_CVTLG + 000002D4
%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual address=00000144,
PC=000D1854, PS=0000001B

If a VAX system was available, the view could have been created successfully
from that platform.

This problem has been corrected in Oracle Rdb V7.0. ♦

3.2.23 SQL Now Generates Connection Name by Default
In previous versions, SQL used the database environment string as the connection
name if a connection was not specified in a CONNECT statement. Beginning
with V7.0, SQL generates a unique default connection name if a connection is not
specified in a CONNECT statement.

In previous versions, the following statement created a new connection named
’ATTACH FILENAME PERSONNEL’. In V7.0, SQL generates a unique
connection name.

SQL> CONNECT TO ’ATTACH FILENAME PERSONNEL’;

3.2.24 ALTER DATABASE Handles EXTENT Attribute Correctly
In previous versions, the ALTER DATABASE . . . EXTENT IS DISABLED clause
was ignored by Oracle Rdb.

In addition, in previous versions, you could not alter the EXTENT attribute for
the storage area RDB$SYSTEM using SQL; you had to use Oracle RMU. This
restriction is lifted in Oracle Rdb V7.0. Now, you can specify the RDB$SYSTEM
storage area in a ALTER DATABASE . . . ALTER STORAGE AREA statement.

Note that the syntax ALTER DATABASE . . . EXTENT IS DISABLED does not
alter existing storage area EXTENT attributes. Rather, this syntax provides a
default for all newly added storage areas. To change the EXTENT attribute on
existing areas, you must use the ALTER DATABASE . . . ALTER STORAGE
AREA clause on each area to be changed.

3.2.25 Now Can Create Storage Maps for Tables Containing Data
In previous versions, you could not create a storage map for a table after data
had been inserted into the table. A table with no storage map is automatically
mapped to the default storage area. To move this table to another area required
that the data be unloaded, and the data deleted. Then, the user could have
created a storage map to map the table to another area.

This restriction has been lifted in V7.0. You can create a storage area for a table,
even if the table contains data. Of course, no storage map can currently exist for
this table.

The storage map must be a simple map that references only the default storage
area and represents the current (default) mapping for the table. The default
storage area is either RDB$SYSTEM or the area name provided by the CREATE
DATABASE DEFAULT STORAGE AREA clause.

The storage map may not change thresholds or compression for the table, nor
can it use the PLACEMENT VIA INDEX clause. It can contain only one area
and cannot be vertically partitioned. The new storage map simply describes the
mapping as it exists by default for the table.

After the storage map is created, you can use the ALTER STORAGE MAP
statement to reorganize the table as required.

3–40 Software Errors Fixed

For more information, see the Oracle Rdb7 Guide to Database Design and
Definition and the Oracle Rdb7 SQL Reference Manual.

3.2.26 Views Containing SELECT Literal Now Return Correct Results
In previous versions, a query that selected from a view did not always return the
correct results when the following conditions were true:

• SELECT statements within the view returned a constant literal for one of the
columns in the view definition.

• The selection predicate (WHERE clause) for the SELECT statement used for
the view specified a condition for the column that may have returned a literal
value in the view definition.

For example, the following view did not always return correct results:

SQL> SHO VIEW VIEW_1
Information for table VIEW_1

Columns for view VIEW_1:
Column Name Data Type Domain
----------- --------- ------
VIEW_COL1 INTEGER
VIEW_COL2 INTEGER
VIEW_COL3 INTEGER
VIEW_COL4 INTEGER
Source:

select
C1.COL1, C1.COL2, C1.COL3, C1.COL4
from TABLE_1 C1, TABLE_2 C2, TABLE_3 C3
where (

(C1.COL1 = C2.COL1)
and (C2.COL1 = C3.COL1)
)

union all
select C5.COL1, C5.COL2, C5.COL3, C5.COL4
from TABLE_1 C4, TABLE_2 C5, TABLE_3 C6,
where (

(C4.COL5 = C5.COL5)
and (C5.COL5 = C6.COL5)
)

union
select C8.COL1, C8.COL2, 0, C8.COL4

-- Note literal for COL3 ^^^
from TABLE_1 C7, TABLE_2 C8
where C9.COL10 = C10.COL10

Note, in the previous example, that the third select statement returns a literal
for the third column.

The following example shows incorrect results that may have been returned by
the query. The first row returns the value 5 in VIEW_COL3, which violates the
WHERE predicate specified for the SELECT from the view:

SQL> SELECT * FROM VIEW_1 WHERE VIEW_COL1=1 AND VIEW_COL3 > 15;
VIEW_COL1 VIEW_COL2 VIEW_COL3 VIEW_COL4

1 0 5 0
1 0 16 0
1 0 16 0
1 0 16 0

3 rows selected
SQL>

Software Errors Fixed 3–41

In this situation, Oracle Rdb did not take into account that one of the SELECT
statements in the view definition was returning a literal value for one of the
columns in the WHERE predicate specified for the view.

This problem has been corrected in Oracle Rdb V7.0.

3.2.27 SELECT DISTINCT from View Now Returns Correct Dbkey
In previous versins, when retrieving the database key (dbkey) of a row from a
view that contained a SELECT DISTINCT expression, it was possible to get an
incorrect dbkey.

The following example shows a view that returned an incorrect dbkey:

CREATE TABLE A (A1 CHAR(1), A2 CHAR(1));
CREATE VIEW VA_WRONG (VA1, VA2) AS SELECT DISTINCT A1,A2 FROM A;

INSERT INTO A VALUES (’B’,’B’);
INSERT INTO A VALUES (’D’,’D’);
INSERT INTO A VALUES (’C’,’C’);

SELECT DBKEY,* FROM VA_WRONG
WHERE DBKEY = (SELECT DBKEY FROM VA_WRONG WHERE VA1 = ’D’);

This problem has been corrected in Oracle Rdb V7.0.

3.2.28 Divide by Zero Fault Corrected
In previous versions, it was possible to encounter a divide-by-zero fault even
though the query tried to prevent the division by zero, as shown in the following
excerpt:

WHERE
(.20 <= (CASE
WHEN sales_summary.total_sales = 0 THEN 1.00
WHEN sales_summary.total_sales <> 0

THEN sales_summary.total_returns/sales_summary.total_sales
END)

In V6.1, this divide-by-zero fault happened only if the query also included GROUP
BY and CASE expressions.

This problem has been corrected in Oracle Rdb V7.0. Oracle Rdb now correctly
tests for, and prevents, the division.

3.2.29 Ctrl/Z from SQL HELP No Longer Erases Command Line Recall Buffer

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, if you used Ctrl/Z to exit HELP in interactive SQL, the SQL
command line recall buffer was erased.

This problem has been corrected in Oracle Rdb V7.0. ♦

3.2.30 Ctrl/Z in Multiscreen Help No Longer Returns RMS-F-EOF Message

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, entering Ctrl/Z after the first page in SQL HELP resulted in
the following message:

%RMS-F-EOF, end of file detected

This problem has been corrected in Oracle Rdb V7.0. ♦

3–42 Software Errors Fixed

3.2.31 Databases Created with MULTITHREADED AREA ADDITIONS Now
Correct

In previous versions, the database root file may have been created with incorrect
data structures when a database was created using both the MULTITHREADED
AREA ADDITIONS clause and the RESERVE STORAGE AREAS clause.
Attempts to access storage areas in the resultant database sometimes failed
with the following errors:

RDB-E-BAD_DPB_CONTENT, invalid database parameters in the database parameter
block (DPB)
RDMS-E-DUPLANAME, area name already used

The following example shows this problem:

SQL> CREATE DATABASE FILENAME BIG
cont> MULTITHREAD AREA ADDITIONS (LIMIT TO 2 AREAS)
cont> RESERVE 200 STORAGE AREAS
cont>
cont> CREATE STORAGE AREA RDB$SYSTEM
cont> FILENAME BIG ALLOCATION IS 200 PAGES
cont> SNAPSHOT ALLOCATION IS 10 PAGES
cont> CREATE STORAGE AREA A1 FILENAME A1
cont> ALLOCATION IS 10 PAGES
cont> SNAPSHOT ALLOCATION IS 10 PAGES;
cont>
SQL> ALTER DATABASE FILENAME BIG
cont> ADD STORAGE AREA M1 FILENAME M1
cont> ALLOCATION IS 10 PAGES SNAPSHOT ALLOCATION IS 10 PAGES;
cont>
SQL> SHOW STORAGE AREA M1;
No Storage Areas Found

SQL> ALTER DATABASE FILENAME BIG ADD STORAGE AREA M1 FILENAME M1;
%RDB-E-BAD_DPB_CONTENT, invalid database parameters in the database
parameter block (DPB)
-RDMS-E-DUPLANAME, area name M1 already used

The workaround was to avoid using the MULTITHREADED AREA ADDITIONS
clause when creating a database.

This problem has been corrected in Oracle Rdb V7.0.

3.2.32 EXPORT and IMPORT Statements Correctly Associate Constraints on
Multischema Databases

In previous versions, when you exported and imported a multischema database,
constraints were associated with the wrong schema because the catalog and
schema information were not correctly exported.

For example, the export and import operations changed the constraint definition
from the first example to the second:

Original definition:
Table constraints for MY_CATALOG.SCHEMA1.TABLE1:
MY_CATALOG.SCHEMA1.COL1_FOREIGN

Definition after export and import:
Table constraints for MY_CATALOG.SCHEMA1.TABLE1:
MY_CATALOG.SCHEMA2.COL1_FOREIGN

|-> Wrong schema

As a result, you could add the same constraint after the import operation without
generating an error message.

Software Errors Fixed 3–43

This problem has been corrected in V7.0. Note that because the catalog
and schema information were not correctly exported, you must export the
multischema database again to import it correctly.

3.2.33 Behavior of Global Buffering Using IMPORT Corrected
In previous versions, the IMPORT statement did not correctly import global
buffering attributes when global buffers were disabled. This problem has been
corrected in V7.0, as shown in the following example:

SQL> CREATE DATA FILE BUFFER_TEST
cont> GLOBAL BUFFERS ARE DISABLED
cont> (NUMBER IS 222, USE LIMIT IS 22);
SQL> EXPORT DATA FILE BUFFER_TEST INTO NEW_BUFFER_TEST;
SQL> DISCONNECT ALL;
SQL> -- IMPORT now shows global buffers as disabled, and the correct number
SQL> -- and user limit
SQL> IMPORT DATA FROM NEW_BUFFER_TEST FILE BUFFER_TEST;
Exported by Oracle Rdb V7.0-00 Import/Export utility
A component of SQL V7.0-00
Previous name was buffer_test
It was logically exported on 22-JAN-1996 19:04

.

.

.
Adjustable Lock Granularity is Enabled Count is 3
Database global buffering is DISABLED
Database number of global buffers is 222
Number of global buffers per user is 22
Database global buffer page transfer is via DISK
Journal fast commit is DISABLED
Journal fast commit checkpoint interval is 0 blocks
Journal fast commit checkpoint time is 0 seconds
Commit to journal optimization is Disabled

.

.

.

3.2.34 EXPORT and IMPORT Statements Handle Invalidated Outlines Correctly
In previous versions, Oracle Rdb exported and imported invalidated outlines.
Then, the IMPORT statement failed with errors such as the following:

%SQL-F-NOOUTLRES, Unable to IMPORT outline DEMO
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-OBSOLETE_METADA, request references metadata objects that no longer exist
-RDMS-F-TABNOTDEF, relation T1 is not defined in database

This problem has been corrected in V7.0. The IMPORT statement no longer fails
when you export and import invalidated outlines. Oracle Rdb exports invalidated
outlines and marks them as invalid during the import. In addition, Oracle
Rdb displays a message indicating the outline is marked as invalid and is not
imported.

The following example illustrates this behavior:

SQL> CREATE DATABASE FILENAME OUTLINE_TEST;
SQL> CREATE TABLE T1 (F1 CHAR(10));
SQL> CREATE INDEX I1 ON T1 (F1);
SQL> COMMIT;

3–44 Software Errors Fixed

SQL> CREATE OUTLINE DEMO
cont> ID ’7900E969D7D406FD9DC09AEBBB9B32F2’
cont> MODE 0
cont> AS (QUERY (SUBQUERY (t1 0 ACCESS PATH INDEX i1)))
cont> COMPLIANCE OPTIONAL;
SQL> COMMIT;
SQL>
SQL> DROP TABLE T1;
SQL> COMMIT;
SQL> -- The outline is now marked invalid.
SQL> SHOW OUTLINE DEMO;

DEMO
Object has been marked INVALID

CREATE OUTLINE DEMO
ID ’7900E969D7D406FD9DC09AEBBB9B32F2’
MODE 0
AS (

QUERY (
SUBQUERY (
t1 0 ACCESS PATH INDEX i1
)

)
)

COMPLIANCE OPTIONAL ;
SQL> DISCONNECT ALL;
SQL> --
SQL> -- Export the database.
SQL> EXPORT DATA FILE OUTLINE_TEST INTO DEMO;
SQL> -- Import no longer fails. A message is displayed indicating the
SQL> -- outline is marked as invalid.
SQL> IMPORT DATA FROM DEMO FILENAME DEMO;
Exported by Oracle Rdb V7.0-00 Import/Export utility
A component of SQL V7.0-00
Previous name was outline_test
It was logically exported on 22-JAN-1996 19:35

.

.

.
IMPORTing STORAGE AREA: RDB$SYSTEM
Outline DEMO is marked as invalid, and is not imported

3.2.35 Export and Import Files Now Can Use Any Extension
In previous versions, SQL EXPORT and IMPORT statements only worked using
the file extension .rbr. Attempts to export to another extension resulted in an
export file with the .rbr extension. Attempts to import from an interchange file
with an extension other than .rbr resulted in the attempt to open the interchange
file with an .rbr extension.

This problem has been corrected in Oracle Rdb V7.0.

3.2.36 Now Can Import Interchange Files with Uppercase Extensions on
Digital UNIX

Digital UNIX In V6.1 on Digital UNIX, SQL did not import an interchange file if any of the
letters in the filename extension were in upper case. The workaround was to
rename the interchange file to one with a lowercase extension.

This problem has been corrected in Oracle Rdb V7.0. ♦

Software Errors Fixed 3–45

3.2.37 IMPORT Statement No Longer Exceeds Memory
In previous versions, attempts to use the SQL IMPORT statement to import a
database with many stored procedures could have failed with a virtual memory
exceeded error.

The problem was due to a memory leak (for example, unreleased virtual memory)
during the CREATE MODULE statement which is executed by IMPORT when
building the new database. As each routine was defined, some of the data
structures allocated in dynamic memory were not released. As a result, the
amount of virtual memory available to the process dwindled.

In some cases, it was possible to alter the process quotas (page file quota) or
system parameters (virtual page count) to work around this problem.

This problem has been corrected in Oracle Rdb V7.0.

3.2.38 EXPORT and IMPORT Statement Problems with Procedures and
Functions in ANSI Databases Are Fixed

In previous versions, users experienced various procedure and function problems
with the SQL EXPORT or IMPORT statements when using ANSI-style privileges
databases. Often, EXPORT or IMPORT consumed all memory available to the
process files. Other problems included ACLs attached to the wrong objects.

This problem has been corrected in Oracle Rdb V7.0.

3.2.39 SQL92 Intermediate Level UNIQUE Constraint Available
Oracle Rdb now provides a UNIQUE constraint that is compliant with the
intermediate level of the SQL92 standard. This type of constraint excludes
columns that are NULL from the UNIQUE comparison, effectively allowing sets
of columns to be UNIQUE or NULL.

When you set the SQL dialect to SQL89, MIA, ORACLE LEVEL1, or SQL92, SQL
uses this type of constraint by default. (The default dialect is currently SQLV40.)
Oracle Rdb recommends that you set the dialect to SQL92 (or one of the listed
dialects) before using the CREATE or ALTER TABLE statements to add UNIQUE
constraints to tables.

Note

The new UNIQUE semantics will be used at run time under any selected
dialect. That is, the table must be created or altered under the listed
dialects to have the new style of unique enabled.

In addition to conforming to the SQL92 Intermediate Level standard, the new
UNIQUE constraint implementation provides improved performance for single
row inserts. This is made possible by eliminating checks for NULL values from
the selection expression, thus simplifying the optimization for unique checking.

The following example shows a comparison of the old and new optimizer
strategies. In this example, the UNIQUE constraint, UNIQUE_A, and an index
on column A are used to check for uniqueness during an INSERT statement.
Note that the optimizer chooses a full range search of the index (that is, [0:0]).

3–46 Software Errors Fixed

~S: Constraint "UNIQUE_A" evaluated
Cross block of 2 entries
Cross block entry 1
Conjunct Firstn Get Retrieval by DBK of relation T_UNIQUE

Cross block entry 2
Conjunct Aggregate-F2 Conjunct
Index only retrieval of relation T_UNIQUE
Index name T_UNIQUE_INDEX_A [0:0]

With the simplified UNIQUE constraint, UNIQUE_B, the optimizer uses a direct
lookup of the index (that is, [1:1]), which reduces the I/O the index needs to
perform the constraint evaluation.

~S: Constraint "UNIQUE_B" evaluated
Cross block of 2 entries
Cross block entry 1
Conjunct Firstn Get Retrieval by DBK of relation T_UNIQUE

Cross block entry 2
Conjunct Aggregate-F2 Index only retrieval of relation T_UNIQUE
Index name T_UNIQUE_INDEX_B [1:1]

In previous versions, the UNIQUE constraint restricted columns to a single
NULL value. To retain this behavior, use the SET DIALECT ’SQLV40’ statement
before creating new tables or altering existing tables to add UNIQUE constraints.

Tables created in previous versions of Oracle Rdb still perform as in previous
versions. Constraints defined through interfaces such as RDO or the
CDD/Repository retain the older style UNIQUE constraint. Future versions of the
Oracle CDD/Repository may implement the new UNIQUE constraint. Databases
exported and imported using the SQL EXPORT and IMPORT statements retain
the UNIQUE constraint as it is defined in the database, regardless of the dialect
setting.

Note

RMU Extract Item=Table will not distinguish between the old and new
UNIQUE constraints in this release of Oracle Rdb. The generated SQL
script must be modified to establish the appropriate dialect before using it
to create a database.

Because this new style of UNIQUE constraint is a relaxation of the UNIQUE
rules, you can drop the old style UNIQUE constraint and redefine the constraint
under the SQL92 dialect.

Note that this meaning of UNIQUE (that is, excluding NULL from the
uniqueness test) does not apply to the UNIQUE index. A UNIQUE index does
not allow duplicate entries for NULL. If a UNIQUE index is currently defined
which assists the UNIQUE constraint optimization, you may wish to drop the
index and make it a non-UNIQUE index so that multiple NULL values can be
stored. The UNIQUE constraint will enforce the uniqueness of the data.

You can use the SQL SHOW TABLE command to determine which type of
UNIQUE constraint is in use. For example, the first example is a UNIQUE
constraint created when the default dialect was used (SQLV40). A new
description follows the "Unique constraint" text, explaining the interpretation of
null values.

Software Errors Fixed 3–47

SQL> SHOW TABLE (CONSTRAINT) T_UNIQUE
Information for table T_UNIQUE

Table constraints for T_UNIQUE:
T_UNIQUE_UNIQUE_B_A
Unique constraint

Null values are considered the same
Table constraint for T_UNIQUE
Evaluated on UPDATE, NOT DEFERRABLE
Source:

UNIQUE (b,a)
.
.
.

This second example is a UNIQUE constraint created when the dialect was set
to ’SQL92’, and the description here indicates that all null values are considered
distinct.

SQL> SHOW TABLE (CONSTRAINT) T_UNIQUE2
Information for table T_UNIQUE2

Table constraints for T_UNIQUE2:
T_UNIQUE2_UNIQUE_B_A
Unique constraint

Null values are considered distinct
Table constraint for T_UNIQUE2
Evaluated on UPDATE, NOT DEFERRABLE
Source:

UNIQUE (b,a)
.
.
.

As a side effect of this change, Oracle Rdb recognizes a larger class of CHECK
constraints as being uniqueness checks. As a result, these constraints are no
longer executed when a DELETE statement is executed for the table, because
a delete operation does not affect the uniqueness of the remaining rows. The
following example shows a CHECK constraint with this characteristic:

SQL> create table T_USER_UNIQUE_NEW (
cont> a integer,
cont> b integer,
cont> constraint unique_ab_new
cont> check ((select count(*)
cont> from T_USER_UNIQUE_NEW t2
cont> where t2.a = T_USER_UNIQUE_NEW.a and
cont> t2.b = T_USER_UNIQUE_NEW.b) <= 1)
cont> not deferrable
cont>);

In previous versions, Oracle Rdb recognized only equality with 1 as a uniqueness
constraint. In this example, a comparison of less than or equal to 1 also qualifies
as a uniqueness constraint.

3.2.40 Constraints No Longer Fail When New Column Is Created Using
DEFAULT

In previous versions, when you added a new column using a DEFAULT clause,
Oracle Rdb evaluated any constraints before it applied the DEFAULT clause to
pre-existing rows. As a result, a constraint violation was detected when one did
not really exist.

3–48 Software Errors Fixed

The following script example shows a constraint that was evaluated too early:

SQL> CREATE DOMAIN DECUS_DOM INTEGER DEFAULT 99;
SQL>
SQL> ALTER TABLE EMPLOYEES
cont> ADD COLUMN DECUS_COL DECUS_DOM
cont> CONSTRAINT DECUS_CONS NOT NULL NOT DEFERRABLE;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-INTEG_FAIL, violation of constraint DECUS_CONS caused operation to fail
-RDB-F-ON_DB, on database DISK1:[TEST.DATABASES]MF_PERSONNEL.RDB;1

The workaround was to change the ALTER TABLE statement to be two separate
statements, as shown in the following example:

SQL> ALTER TABLE EMPLOYEES
cont> ADD COLUMN DECUS_COL DECUS_DOM;
SQL> ALTER TABLE EMPLOYEES
cont> ALTER COLUMN DECUS_COL
cont> CONSTRAINT DECUS_CONS NOT NULL NOT DEFERRABLE;

This problem is corrected in Oracle Rdb V7.0. Now, Oracle Rdb evaluates
constraints after it applies the default value.

3.2.41 New Behavior for Domain Check Constraints and NULL
The SQL domain CHECK constraint is implemented using the VALID IF
clause (available in RDO and CDD/Repository). However, the VALID IF clause
implements different semantics from an SQL column CHECK constraint as
defined by the ANSI/ISO SQL standard. The difference is in the handling of the
check expression when it is evaluated as NULL.

For example, the column CHECK constraint COL < 0 fails if the value of COL
exceeds 0. However, a null value does not cause a column constraint failure.
On the other hand, in previous versions, a domain CHECK constraint caused a
failure when the expression evaluated to NULL.

For all new or modified domain CHECK constraints, Oracle Rdb V7.0 now applies
the same semantics for NULL as for column CHECK constraints. Any domain
CHECK constraints created by previous versions of Oracle Rdb continue to
exhibit incorrect (or at least inconsistent) handling of NULL when compared to
column CHECK constraints.

To inherit the new behavior, you must redefine the domain CHECK constraint for
all domains in the database. The following example shows an ALTER DOMAIN
statement that redefines the CHECK constraint:

SQL> ALTER DOMAIN salary CHECK (VALUE > 0.00) NOT DEFERRABLE;

The ALTER DOMAIN statement causes the new definition to be propagated to all
columns based on the domain.

Note

The behavior of CDD or RDO constraints is unchanged. The constraint
must be defined through the SQL interface to inherit the semantics
described by this release note.

In previous versions, the workaround was to define the CHECK constraint as:
CHECK (value is NULL or check-expression).

Software Errors Fixed 3–49

3.2.42 RDB$MESSAGE_VECTOR Psect Size Corrected for OpenVMS Alpha

OpenVMS
Alpha

In previous versions, using the RDB$MESSAGE_VECTOR psect with the SQL
precompiler or SQL module processor (especially when you used INCLUDE
SQLCA), could have resulted in 160 byte psect lengths instead of the correct
80 byte psect length on OpenVMS Alpha systems. This problem probably was
not noticed by most users, except those who used multiple shared images with
multiple versions of Oracle Rdb.

The following sample C program shows the problem in a SQL precompiled
program:

exec sql declare alias filename mf_personnel;

main()
{ long SQLCODE;

long x;

exec sql create outline out1 from (select last_name from employees);
printf("SQLCODE: %d\n",SQLCODE);
SQL$SIGNAL();
exec sql create outline out2 from (select employee_id from job_history);
printf("SQLCODE: %d\n",SQLCODE);
SQL$SIGNAL();

exec sql commit;
}

This problem has been corrected in V7.0. ♦

3.2.43 CANTSNAP Errors Stop Occurring After Multiple Re-Ready Requests
When an exclusive transaction runs concurrently with a read-only transaction,
the exclusive transaction does not write to the snapshot file, and the read-only
transaction can therefore get a inconsistent view of the modified records from
the snapshot file. This situation is normally prevented by the CANTSNAP error
being returned to the read-only transaction.

In previous versions, however, a problem that caused the CANTSNAP error to
only get issued once per table partition to the read-only transaction had been
identified. If the read-only transaction retried its query multiple times, the query
eventually succeeded and resulted in a subsequent bugcheck.

The following example shows that the first attempt at reading from JOBS was
correctly rejected with the CANTSNAP error, but the second attempt proceeded
and then failed with the bugcheck:

Session 1 Session 2
----------------------------- ---
SQL> SET TRANS READ ONLY;

SQL> SET TRANS READ WRITE RESERVING JOBS
cont> FOR EXCLUSIVE WRITE;

SQL> UPDATE JOBS SET MINIMUM_SALARY = 100000
cont> WHERE JOB_CODE = ’APGM’;

SQL> COMMIT;

SQL> SET TRANS READ ONLY;

SQL> SELE * FROM JOBS;
%RDB-E-LOCK_CONFLICT, request failed due to locked resource
-RDMS-F-CANTSNAP, can’t ready storage area
DBS1:[JOE_USER.RDBLAB.MFDB_V60]JOBS.RDA;1 for snapshots

3–50 Software Errors Fixed

SQL> SELE * FROM JOBS;
%RDMS-I-BUGCHKDMP, generating bugcheck dump file DBS1:[JOEUSR]RDSBUGCHK.DMP;4

Interestingly, if you did the same experiment using the EMPLOYEE table, it took
three retries in the read-only transaction before getting the bugcheck, as shown
in the following example:

Session 1 Session 2
----------------------------- ---
SQL> SET TRANS READ ONLY;

SQL> SET TRANS READ WRITE RESERVING EMPLOYEES
cont> FOR EXCLUSIVE WRITE;

SQL> UPDATE EMPLOYEES SET CITY=’Nice’
cont> WHERE EMPLOYEE_ID = ’00164’;

SQL> COMMIT;

SQL> SELE * FROM EMPLOYEES WHERE EMPLOYEE_ID = ’00164’;
%RDB-E-LOCK_CONFLICT, request failed due to locked resource
-RDMS-F-CANTSNAP, can’t ready storage area
DBS1:[JOE_USER.RDBLAB.MFDB_V60]EMPIDS_LOW.RDA;1 for snapshots

SQL> SELE * FROM EMPLOYEES WHERE EMPLOYEE_ID = ’00164’;
%RDB-E-LOCK_CONFLICT, request failed due to locked resource
-RDMS-F-CANTSNAP, can’t ready storage area
DBS1:[JOE_USER.RDBLAB.MFDB_V60]EMPIDS_LOW.RDA;1 for snapshots

SQL> SELE * FROM EMPLOYEES WHERE EMPLOYEE_ID = ’00164’;
%RDB-E-LOCK_CONFLICT, request failed due to locked resource
-RDMS-F-CANTSNAP, can’t ready storage area
DBS1:[JOE_USER.RDBLAB.MFDB_V60]EMPIDS_LOW.RDA;1 for snapshots

SQL> SELE * FROM EMPLOYEES WHERE EMPLOYEE_ID = ’00164’;
%RDMS-I-BUGCHKDMP, generating bugcheck dump file DBS1:[JOE_USER]RDSBUGCHK.DMP;3
%COSI-F-BUGCHECK, internal consistency failure

This occurred because the EMPLOYEE table is partitioned using three logical
areas and each ready failed in turn.

There was no workaround to this problem.

This problem has been corrected in Oracle Rdb V7.0. The CANTSNAP error is
now correctly returned all of the time.

3.2.44 Multistatement Procedure Using a Labeled FOR Statement No Longer
Bugchecks

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, using a labeled FOR statement inside a loop in a
multistatement procedure sometimes resulted in a SQL bugcheck dump in
SQL$$CREATE_STMT. The bugcheck contained the text SQL$SEM - 0.

The following example shows the problem in interactive SQL:

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> DECLARE :i BIGINT;
SQL> BEGIN
cont> WHILE :i > 0
cont> LOOP
cont> po_loop:

Software Errors Fixed 3–51

cont> FOR :aa1 AS EACH ROW OF TABLE CURSOR tc1 FOR
cont> SELECT EMPLOYEE_ID FROM EMPLOYEES DO
cont> SET :i = 0;
cont> END FOR;
cont> END LOOP;
cont> END;
%SQL-I-BUGCHKDMP, generating bugcheck dump file USD04:[MOY]SQLBUGCHK.DMP;
%SQL-F-BUGCHK, There has been a fatal error. Please submit a software
performance report. SQL$SEM - 0

This problem has been corrected in V7.0.

3.2.45 Dynamic SQL and TRIM No Longer Result in Access Violation
In previous versions, use of TRIM({BOTH, TRAILING, or LEADING} FROM
{source}) could have resulted in access violations when used with dynamic SQL.

The following precompiled SQL program reproduced this problem:

#include <string.h>
#include <stdio.h>
main() {int SQLCODE;

char cmd[128];
strcpy(cmd,"attach ’filename home1:mf_personnel’");
EXEC SQL execute immediate :cmd;
strcpy(cmd,"select trim(trailing from last_name) from employees");
EXEC SQL prepare dyn_statement from :cmd;
if (SQLCODE != 0)

{ printf("Error on prepare");
sql$signal(); } }

The workaround was to always specify the trim character.

This problem has been corrected in Oracle Rdb V7.0.

3.2.46 Intervals in Views No Longer Loop
In previous versions, when you selected an interval from a view, the process
looped and never returned. For example, because DATE_VIEW is a view, the
following query looped and never returned a value:
SQL> SELECT * FROM DATE_VIEW
cont> WHERE DATE_DIFF=INTERVAL ’0’ YEARS;

This problem has been corrected in Oracle Rdb V7.0.

3.2.47 Using COALESCE with Aggregate Functions Now Returns Correct
Results

In previous versions, when you used a conditional expression and the COALESCE
function with aggregate functions, Oracle Rdb could have returned incorrect
results.

The following example shows a query that returned one row incorrectly:

SQL> select coalesce(sum(salary_amount),0) from salary_history
cont> where employee_id = ’00160’;
0 rows selected

This problem has been corrected in Oracle Rdb V7.0.

3–52 Software Errors Fixed

3.2.48 SELECT . . . LIKE with Host Variable No Longer Fails
In previous versions, when varying the length of the string in host variables
to shorter strings, the SELECT statement often failed to retrieve data. The
following shows an example of this type of SELECT statement:

SELECT {column} FROM {table} WHERE {column2} LIKE :{hostfield} ;

Workarounds included such drastic remedies as exiting the program and
rerunning it.

This problem has been corrected in Oracle Rdb V7.0.

3.2.49 SQL No Longer Bugchecks at SQL$$SET_TERM_CHARS + xxxxxx
In previous versions, SQL bugchecked at SQL$$SET_TERM_CHARS + xxxxxx
when long query headers were used. This occurred when the length of the query
header plus the length of the indent (generated by Interactive SQL) was greater
than the length of the line.

The following shows an example that generated the problem:

set language ENGLISH;
set quoting rules ’SQL92’;
CREATE DATABASE FILENAME MIKE;

create domain MTAGIO BIGINT (2)
query header is ’Mtt total d’’agios/escompte’;
comment on domain MTAGIO is

’Montant total d’’agios/escompte’;

create domain MTFCOF BIGINT (2)
query header is ’Mtt total de frais Coface’;
comment on domain MTFCOF is ’Montant total de frais Coface’;

create domain MTFHPV
BIGINT (2)
query header is ’montant frais HPV’;
comment on domain MTFHPV is ’montant frais HPV’;

.

.

.
create table MVTSTA (

.

.

.
MSAGIO MTAGIO
query header is
’total agios/escpte pour la ligne, positif si création,’
’ négatif si annulation’

MSFCOF MTFCOF
query header is
’total frais coface pour la ligne, signé négativement si annulation’,

MSFHPV MTFHPV
query header is
’total frais hpv pour la ligne, signé négativement si annulation’,
’qté en unité de prix, signée négativement si annulation’,

.

.

.
TXMANE TXMANE);

comment on table MVTSTA is
’Mouvements quotidiens pour les éditions de suivi des commandes’;

insert into MVTSTA (MSAGIO) values (1234);
select * from MVTSTA;
select MSAGIO,MSAGIO,MSAGIO from MVTSTA;

The workaround was to use shorter query names or column names.

Software Errors Fixed 3–53

This problem has been corrected in Oracle Rdb V7.0.

3.2.50 Bugcheck Error in SHOW TRANSACTION Fixed
In previous versions, the SQL SHOW TRANSACTION statement could have
resulted in a bugcheck with an exception in SQL$$OUTPUT_MSG with an
additional message: SQL$EXESHO - 9. The SHOW TRANSACTION statement
displays information about the characteristics of the current transaction. The
problem occurred when there was one disconnection in a multiple connection.

The following example shows the coding in which this problem occurred:

SQL> ATTACH ’FILE PERSONNEL’;
SQL> CONNECT TO ’FILE PERSONNEL’ AS ’C2’;
SQL> DISCONNECT DEFAULT;
SQL> SELECT COUNT(*) FROM RDB$RELATIONS;
SQL> COMMIT;
SQL> SHOW TRANSACTION

This problem has been fixed for Oracle Rdb V7.0.

3.2.51 ALTER TABLE Column Deletion Errors Fixed
In previous versions, you could have received an error if you tried to update a
column in an existing table definition after using the SQL statement ALTER
TABLE with the DROP COLUMN clause. The error occurred when the column to
be deleted was of LIST OF BYTE VARYING data type.

The following example shows the error that occurred:

SQL> ALTER TABLE RESUMES DROP COLUMN RESUME;
SQL> COMMIT;
SQL> ALTER TABLE RESUMES ADD COLUMN JUNK CHAR(5);
SQL> UPDATE RESUMES SET JUNK = ’abcd’ WHERE EMPLOYEE_ID=’00165’;
%RDB-E-NO_RECORD,
-RDMS-F-NODBK

This problem has been corrected in Oracle Rdb V7.0.

3.2.52 Using Dynamic Statement Names No Longer Causes Memory Leaks
In previous versions, using dynamic statement names in dynamic SQL sometimes
caused memory leaks when different statement names were used.

An example of the problem is a PREPARE statement with dynamic statement
names, such as the following:

EXEC SQL PREPARE :STMT_NAME FROM :STMT

A program containing this statement may not have released memory when you
used a RELEASE :STMT_NAME statement, causing memory growth problems
in programs that used many different statement names. This problem affected
dynamic SQL using both precompiled SQL and SQL module language interfaces.

This problem has been corrected in Oracle Rdb V7.0.

3–54 Software Errors Fixed

3.2.53 Now Can Modify Data Types When Constraints Are Defined
Since Oracle Rdb Version 4.2, the SQL ALTER statement failed when it tried
to update the data type of a column and a constraint existed that referred to
the column. Oracle Rdb did not permit columns to be updated because the
altered column might contain a value that would violate the constraint. The
ALTER statement failed and returned an error message as shown in the following
example:

SQL> CREATE DOMAIN t1 CHAR (6);
SQL> CREATE TABLE t (f t1
cont> CONSTRAINT f_constraint
cont> CHECK (f > ’abc’) DEFERRABLE);

.

.

.
SQL> ALTER DOMAIN T1 CHAR (3);
%SQL-W-CHR_TOO_SHO, Character length of domain T1 is too short
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-FLDINCON, field F is referenced in constraint F_CONSTRAINT
-RDMS-F-FLDNOTCHG, field F has not been changed

Beginning with V7.0, Oracle Rdb checks the needed constraints and permits the
ALTER TABLE or ALTER DOMAIN statement to succeed if no constraints are
violated. For example, the following ALTER DOMAIN statement successfully
updates the column:

SQL> INSERT INTO t VALUE (’abd’);
SQL> SELECT f FROM t;
abd

SQL> ALTER DOMAIN t1 CHAR (3);
%SQL-W-CHR_TOO_SHO, Character length of domain T1 is too short

Note that the ALTER TABLE or DOMAIN statements now return a warning
message, even when the column has been updated successfully. However, if the
ALTER statement tries to perform an update that will result in a constraint
violation, the statement fails and returns an error message. For example:

SQL> ALTER DOMAIN t1 CHAR (2);
%SQL-W-CHR_TOO_SHO, Character length of domain T1 is too short
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-INTEG_FAIL, violation of constraint F_CONSTRAINT caused operation to
fail
-RDB-F-ON_DB, on database personnel

3.2.54 ALTER TABLE No Longer Causes BEFORE or AFTER UPDATE Triggers
to Execute Unexpectedly

In previous versions, the following ALTER TABLE statements may have caused
BEFORE or AFTER UPDATE triggers to fire unexpectedly:

• ALTER TABLE ADD COLUMN: When the column had an explicit default
value or inherited a default value from a domain in which the default value
was not NULL

• ALTER TABLE ALTER COLUMN: When either RDMS$BIND_UPDATE_
CHANGED_RELATION or RDMS$BIND_VALIDATE_CHANGE_FIELD
logical names equated to the value "1" and an ALTER TABLE statement
modified a collating sequence or data type of a column

• ALTER TABLE DROP COLUMN: When the data type of the dropped column
was LIST OF BYTE VARYING

Software Errors Fixed 3–55

Each of these ALTER TABLE statements required a query to execute to
update the table rows. For example, an update to the table rows might include
propagating the DEFAULT value, validating the data type change, or cascading
the delete of the LIST OF BYTE VARYING data. These updates caused the
BEFORE or AFTER UPDATE triggers to execute unexpectedly.

This problem has been corrected in Oracle Rdb V7.0. The triggers no longer
execute during ALTER TABLE. This correction causes the full table update to
have a more efficient execution strategy.

3.2.55 Simple CASE Expressions Are Evaluated Correctly
In Oracle Rdb V6.0, SQL introduced two forms of the CASE expression: the
simple and the searched case expression. The simple case expression is a short-
hand that allows the programmer to specify the matching value expression once
and then list the equality matching expressions. For example:

CASE (SELECT COUNT(*) FROM EMPLOYEES)
WHEN 0 THEN ’DATABASE EMPTY’
WHEN 100 THEN ’DATABASE HAS EXPECTED NUMBER OF EMPLOYEES’
ELSE ’DATABASE HAS EMPLOYEES’

END

This type of CASE expression calculates the value expression once and then
compares it to each WHEN expression. When the primary expression is complex
(such as the subquery in the example) this format provides a slight performance
benefit.

Unfortunately, in the following situations, when the evaluation of the primary
expression was performed at the wrong time, it could have produced incorrect
results:

• When the computed column was sorted using the ORDER BY clause

Oracle Rdb performed the evaluation after the sorting, generating an incorrect
sort order.

• When the expression was used in a subquery

The optimizer may have chosen to reorder the evaluation, and again evaluate
the CASE expression with the wrong value.

The searched CASE expression did not suffer from these problems and could have
been used as an alternative.

This problem has been corrected in Oracle Rdb V7.0.

3.2.56 New Warning Message Is Generated for Redundant Column References
Oracle Rdb Version 7.0 now generates a warning message when it finds
redundant column references in an index definition. A message is generated
because, when a column is referenced more than once in an SQL index definition,
the reference adds no useful information and increases the size of the index key.
Thus, redundant column references use more disk space to store the index.

The following example shows the new warning message:

SQL> CREATE INDEX DUP_COL ON EMPLOYEES (EMPLOYEE_ID, LAST_NAME, EMPLOYEE_ID);
%RDB-W-META_WARN, metadata successfully updated with the reported warning
-RDMS-W-IDXDUPCOL, index definition contains a redundant reference to a column

Note that the index is created even though the warning message is generated.

3–56 Software Errors Fixed

3.2.57 Value Restriction Removed for Indexes and Storage Maps
In previous versions, Oracle Rdb limited the values in storage maps and index
definitions. This affected the following SQL statements:

• CREATE INDEX

• ALTER INDEX

• CREATE STORAGE MAP

• ALTER STORAGE MAP

If the columns used for partitioning had numeric data types and the values
specified for partitioning were text strings, the actual data partitioning was
counterintuitive, provided incorrect results, or resulted in bugchecks.

The following example shows the coding that might cause this problem:

CREATE INDEX X1 ON T1 (F1 ASC MAP VALUES -1 to 2) TYPE HASHED
STORE USING (F1)

IN a1 WITH LIMIT OF (’-1’)
IN a2 WITH LIMIT OF (’0’)
IN a3 WITH LIMIT OF (’1’) ;

This problem has been corrected in Oracle Rdb V7.0.

3.2.58 ACCVIO or Memory Consumption Loop Problems Using SQL Module
Language and Connections Are Fixed

In Oracle Rdb V6.0 and V6.1, programs that used SQL module language and
connections could have terminated with access violations or with memory
allocation failure errors. This problem was due to ACCVIO or memory
consumption loop problems that caused blocks of memory to be prematurely
deallocated.

The following example shows how this problem might have occurred. One
Fortran program and three SQL module language sources are compiled and
linked together. The SQL modules should have been compiled with the connect
qualifier.

The following example shows the Fortran program:

PROGRAM TEST_MULTI_CONNECT

IMPLICIT NONE
!
! Local variables.

CHARACTER*128 MSG_BUFFER
INTEGER*2 MSG_LENGTH
INTEGER*4 SQLCODE
CHARACTER*32 CONNECT_NAME

!
CONNECT_NAME = ’CONNECTION_1’

!
! Connect to the TDF database.

CALL TDF_CONNECT (SQLCODE, CONNECT_NAME)
IF (SQLCODE .LT. 0) GOTO 34

!
! Start a read/write transaction.

CALL TDF_SET_TRANS_RW (SQLCODE)
IF (SQLCODE .LT. 0) GOTO 34

!
! Commit.

CALL TDF_COMMIT (SQLCODE)
IF (SQLCODE .LT. 0) GOTO 34

Software Errors Fixed 3–57

!
! Start a read-only transaction.

CALL TDF_SET_TRANS_RO (SQLCODE)
IF (SQLCODE .LT. 0) GOTO 34

!
! Rollback the transaction.

CALL TDF_ROLLBACK (SQLCODE)
IF (SQLCODE .LT. 0) GOTO 34

!
! Disconnect from TDF_DB.

CALL DISCONNECT (SQLCODE, CONNECT_NAME)
IF (SQLCODE .LT. 0) GOTO 34

!
!
! CS database
!

CONNECT_NAME = ’CONNECTION_2’
!
! Connect to the CS database.

CALL CS_CONNECT (SQLCODE, CONNECT_NAME)
IF (SQLCODE .LT. 0) GOTO 34

!
! Start a read/write transaction.

CALL TDF_SET_TRANS_RW (SQLCODE)
IF (SQLCODE .LT. 0) GOTO 34

!
! Commit the database transaction.

CALL TDF_COMMIT (SQLCODE)
IF (SQLCODE .LT. 0) GOTO 34

!
! Disconnect from CS_DB.

CALL DISCONNECT (SQLCODE, CONNECT_NAME)
IF (SQLCODE .LT. 0) GOTO 34

!
!
! More TDF database
!

CONNECT_NAME = ’CONNECTION_3’
!
! Connect to the TDF database.

CALL TDF_CONNECT (SQLCODE, CONNECT_NAME)
IF (SQLCODE .LT. 0) GOTO 34

!
! Start a read/write transaction.

CALL TDF_SET_TRANS_RW (SQLCODE)
IF (SQLCODE .LT. 0) GOTO 34

!
! Commit the database transaction.

CALL TDF_COMMIT (SQLCODE)
IF (SQLCODE .LT. 0) GOTO 34

!
! Disconnect from TDF_DB.

CALL DISCONNECT (SQLCODE, CONNECT_NAME)
IF (SQLCODE .LT. 0) GOTO 34

!
! Done.

STOP
!
!
! Error handling.
!
34 CALL SQL$GET_ERROR_TEXT (MSG_BUFFER, MSG_LENGTH)

TYPE *, MSG_BUFFER (:MSG_LENGTH)
CALL TDF_ROLLBACK (SQLCODE)

CALL TDF_ROLLBACK (SQLCODE)

3–58 Software Errors Fixed

STOP
END

The following example shows the first SQL module language program:

-- Define header information.
MODULE TDF_CONNECT -- Module name
LANGUAGE FORTRAN -- Language of calling program
AUTHORIZATION RDB$DBHANDLE -- Default authorization identifier
PARAMETER COLONS -- Parameters are prefixed by colons
--
-- Attach to the database.
DECLARE GLOBAL TDF ALIAS FILENAME ’TDF_DB’
--
-- Establish a TDF database connection.
PROCEDURE TDF_CONNECT

(SQLCODE,
:CONNECT_NAME CHAR(32));
CONNECT TO ’ALIAS TDF’ AS :CONNECT_NAME;

The following example shows the second SQL module language program:

-- Define header information.
MODULE CS_CONNECT -- Module name
LANGUAGE FORTRAN -- Language of calling program
AUTHORIZATION RDB$DBHANDLE -- Default authorization identifier
PARAMETER COLONS -- Parameters are prefixed by colons
--
-- Attach to the database.
DECLARE GLOBAL CS ALIAS FILENAME ’CS_DB’
--
-- Establish a CS database connection.
PROCEDURE CS_CONNECT

(SQLCODE,
:CONNECT_NAME CHAR(32));
CONNECT TO ’ALIAS CS’ AS :CONNECT_NAME;

The following example shows the third SQL module language program:

-- Define header information.
MODULE GENERAL_CONNECT -- Module name
LANGUAGE FORTRAN -- Language of calling program
AUTHORIZATION RDB$DBHANDLE -- Default authorization identifier
PARAMETER COLONS -- Parameters are prefixed by colons
--
-- Attach to the databases.
DECLARE GLOBAL CS ALIAS FILENAME ’CS_DB’
DECLARE GLOBAL TDF ALIAS FILENAME ’TDF_DB’
--
-- Change to a specific database connection.
PROCEDURE SET_CONNECTION

(SQLCODE,
:CONNECT_NAME CHAR(32));
SET CONNECT :CONNECT_NAME;

--
-- Disconnect from a specific database connection.
PROCEDURE DISCONNECT

(SQLCODE,
:CONNECT_NAME CHAR(32));
DISCONNECT :CONNECT_NAME;

--
-- Set a read-only transaction.
PROCEDURE TDF_SET_TRANS_RO

(SQLCODE);
SET TRANSACTION READ ONLY;

Software Errors Fixed 3–59

--
-- Set a read/write transaction.
PROCEDURE TDF_SET_TRANS_RW

(SQLCODE);
SET TRANSACTION READ WRITE;

--
-- Commit outstanding transaction for the current connection.
PROCEDURE TDF_COMMIT

(SQLCODE);
COMMIT;

--
-- Rollback outstanding transaction for the current connection.
PROCEDURE TDF_ROLLBACK

(SQLCODE);
ROLLBACK;

This problem has been corrected in Oracle Rdb V7.0.

3.2.59 COMMIT with List Cursor Processing No Longer Bugchecks
In previous versions, a COMMIT statement sometimes failed with a bugcheck
dump, such as one shown in the following example:

***** Exception at 00199B26 : RDMS$$BLOB_CLOSE + 00000006
%SYSTEM-F-ACCVIO, access violation, reason mask=00,
virtual address=00000078, PC=00199B26, PSL=03C00000

This was the result of the commit code calling SQL$CLOSE_CURSORS to close
open cursors. It occurred under the following conditions:

• A read LIST cursor was opened on a row but was never explicitly closed.

• A row was deleted (usually by the DELETE ... WHERE CURRENT OF
clause).

• An insert LIST cursor was opened and closed.

• A commit was executed.

The problem occurred because all LIST cursors are implicitly closed when the
source row is deleted. Thus, the SQL$CLOSE_CURSORS routine was attempting
to close an already closed cursor. The workaround to this problem was to
explicitly close all LIST cursors before deleting the source row.

This problem has been corrected in Oracle Rdb V7.0.

3.2.60 COMMIT and ROLLBACK Are Now Ignored If There Is No Transaction
In previous versions, an exception was raised when the COMMIT or ROLLBACK
statements executed in a multistatement procedure or a stored procedure if there
was no active transaction. The ANSI/ISO standard for SQL states that, in these
cases, the COMMIT and ROLLBACK statements should be ignored.

Oracle Rdb V7.0 ignores the COMMIT or ROLLBACK statements when no
transaction is active.

Because checks for an active transaction are no longer needed, you can simplify
your application programming code to make it more readable. The next two
code examples show how you might reduce the complexity of your application
programs. For example, your programs might include the following code that
checks for an active transaction:

3–60 Software Errors Fixed

BEGIN
DECLARE :ta INTEGER;
-- Check if a transaction is active
GET DIAGNOSTICS :ta = TRANSACTION_ACTIVE;
IF :ta = 1 THEN

-- Clear previous transaction.
COMMIT;

END IF;
-- Now do the work of the procedure.
SET TRANSACTION READ ONLY;
-- Some action
COMMIT;

END;

To simplify the application code, remove the GET DIAGNOSTICS statement and
the IF statement as shown in the following example:

BEGIN
-- Clear previous transaction.
COMMIT;
-- Now do the work of the procedure.
SET TRANSACTION READ ONLY;
-- Some action
COMMIT;

END;

3.3 Oracle RMU Errors Fixed
This section describes problems that have been fixed in the Oracle RMU interface.

3.3.1 RMU Convert Command Works Properly with Fixed-Size AIJ Files
In V6.1, using the RMU Convert command on databases with fixed-size (circular)
AIJ journaling resulted in AIJ files being inaccessible at AIJ switch-over time.
This resulted in an %RDMS-F-AIJTERMINATE error and the forced exit of the
image to protect database integrity.

The workaround was to drop and recreate the .aij files under the converted Oracle
Rdb database before resuming database activity.

This problem has been corrected in V7.0.

3.3.2 RMU Open Command and Global_Buffers Qualifier Now Works Correctly

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, if the RMU Open command specified the Global_Buffers
qualifier but global buffers were not enabled for the database, Oracle Rdb opened
the database with no global buffers but did not notify the user that global buffers
were not being used.

This problem has been corrected in V7.0. When the RMU Open command
specifies the Global_Buffers qualifier, but global buffers are not enabled for the
database, Oracle Rdb does not open the database and, instead, returns an error
message to the user. ♦

3.3.3 RMU Restore Just_Pages No Longer Leaves Pages with Bad Logical
Area

Under certain conditions, the RMU Restore Just_Pages command could leave
uniform format pages in the database with a zero logical area number. This
problem sometimes resulted in bugchecks in DIOFREE$UNMARK_AIJ_
RECORDS when records were inserted into the page after it had been restored.

Software Errors Fixed 3–61

The following example shows how this could occur:

$ SQL
SQL> CREATE DATABASE FILENAME ’TEST’ -- create a database
cont> RESERVE 1 JOURNAL
cont> CREATE STORAGE AREA RDB$SYSTEM FILENAME ’RDB$SYSTEM.RDA’
cont> PAGE FORMAT IS UNIFORM
cont> PAGE SIZE IS 4 BLOCKS ALLOCATION IS 200 PAGES
cont> SNAPSHOT FILENAME ’RDB$SYSTEM’ SNAPSHOT ALLOCATION IS 10 PAGES;
SQL> DISCONNECT ALL;
SQL> ALTER DATABASE FILENAME TEST
cont> JOURNAL IS ENABLED ADD JOURNAL AIJ1 FILENAME AIJ1;
SQL> EXIT
$ RMU/BACKUP TEST BCK ! backup the database
$ SQL
SQL> ATTACH ’FILENAME TEST’;
SQL> CREATE TABLE T (T CHAR(1)); -- create a new table
SQL> COMMIT;
SQL> INSERT INTO T VALUE (’1’) RETURNING DBKEY; -- insert a row

DBKEY
47:186:0

1 row inserted
SQL> COMMIT;
SQL> EXIT;
$ RMU/RESTORE/AREA BCK RDB$SYSTEM/JUST_PAGES=186 ! restore the page
$ RMU/VERIFY/ALL TEST ! verify the database
%RMU-W-BADPTLARE, invalid larea for uniform format data page 186

SPAM larea_dbid: 47, page larea_dbid: 0

This problem has been corrected in V7.0.

3.3.4 Incremental Restore Now Marks Page Ranges as Changed
In previous versions, when an incremental backup file was restored, it did not
mark the page ranges for the restored pages as changed. This occurred only
when you used the fast incremental backup option (the default). Thus, if another
incremental backup was then done on the restored database, Oracle RMU did
not backup the pages restored in the previous incremental restore operation.
Consider the following sequence of events:

1. You perform a full backup of the database.

2. Users update the database.

3. You perform an incremental backup operation using the fast incremental
backup option (the default).

4. The database is deleted.

5. You restore the full backup file.

6. You restore the incremental backup file.

7. Users update the database.

8. You perform an incremental backup operation using the fast incremental
backup option.

In the previous sequence, the last incremental backup operation backed up the
database updates made in the previous step, but it did not back up the changes
restored in the previous incremental restore operation. If the full backup file
was restored again, and the last incremental backup file was restored, the
database updates applied by the incremental restore operation done before the
last incremental backup were lost.

3–62 Software Errors Fixed

This problem has been corrected in V7.0.

3.3.5 No Operator Request Issued When Loader Becomes Empty

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS V6.1 systems and later (or possibly older OpenVMS systems that
have had MOUNT patches applied), if the tape loader became empty, Oracle RMU
waited for hours before issuing an operator request asking for another tape. For
example, when using the RMU Backup command to back up to a device that has
a loader, such as a TF867, after all of the tapes in the stacker were used, Oracle
RMU waited for more than three hours before it sent a REPLY message to the
operator asking for the next tape to be mounted.

The problem was due to changes made to the $MOUNT system service. Prior
to OpenVMS V6.1, the $MOUNT system service always returned an error
immediately if there was no tape in the tape drive. At the request of OpenVMS
customers, the $MOUNT system service was changed to behave differently if
the tape drive had a loader. In that situation, the $MOUNT system service
continuously polls the drive checking to see if a tape has been loaded. The
$MOUNT system service displays the MOUNT-I-WAITDEVRDY message when it
begins the polling. If, after five minutes, no tape is loaded, the $MOUNT system
service returns an error.

In the past, Oracle RMU always attempted to poll tape drives that had loaders.
That is, it called the $MOUNT system service and if the $MOUNT system
service returned an error, Oracle RMU waited five seconds and tried again.
Depending on the tape drive, Oracle RMU could iterate through that loop 40
or more times. When the $MOUNT system service immediately returned an
error, Oracle RMU sometimes waited for close to three minutes before sending an
OPERATOR message requesting the next tape. However, with the new changes
to the $MOUNT system service, Oracle RMU waited 40 times (*) 5 minutes, or
more than three hours, before displaying a message to the operator if there was
no tape in the drive.

In V7.0, Oracle RMU has been modified so that it works with the new or old
$MOUNT system service behavior. Instead of using a loop count with the
$MOUNT system service, Oracle RMU checks elapsed time. If no tape is mounted
in approximately three minutes, Oracle RMU displays a message to the operator.
♦

3.3.6 Failed AIJ Backup No Longer Causes Recovery Problems
In previous versions, after an AIJ backup failure, subsequent attempts to recover
a database using the failed AIJ backup file did not work correctly under certain
circumstances and resulted in portions of transactions not being applied to the
database properly.

The following describes one scenario where the AIJ backup failed with the
exception AIJJRNBSY and subsequent attempts to recover that backup file did
not work properly.

As a consequence of a disk failure (stripe set), the customer had to restore and
recover the database. The database restore operation worked correctly, as did
the AIJ recovery operation, up to journal #10. Then, instead of continuing to
journal #11, the recovery operation asked again for journal #9 and #10, ignoring
all the transactions on those journals. The recovery process started automatic
AIJ recovery from journal #11 (AIJ_2) which was empty, then asked for journal
#12 and ignored all transactions on it and finished the recovery successfully.

Software Errors Fixed 3–63

This problem resulted because the journal #10 AIJ backup operation failed
because journal #11 was busy and backup of journal #11 did not finish (aborted).

This problem has been corrected in V7.0.

The AIJ recovery problem resulted from the AIJ backup operation failure. The
AIJ backup operation has been fixed to identify the successful backup of each
journal in a multijournal backup operation. This allows the subsequent AIJ
recover operation to distinguish between errors trying to start the AIJ backup
operation (such as AIJJRNBSY) and errors that occur while actually backing up
an AIJ journal (such as disk error).

The previous change required a change in the AIJ recovery operation to allow the
processing of appended AIJ journals. This change was available in Oracle Rdb
V6.1 and higher.

Following detection of the failed AIJ backup, the AIJ recover operation allowed
the recovery sequence number to be incremented incorrectly. This problem has
also been corrected.

During testing of the previous two problems, another AIJ recovery problem was
identified that resulted in the AIJ backup sequence number being reset to a lower
value than that created by the database restore operation. This problem has also
been corrected.

An AIJ recover operation for which existing modified AIJ journals exist, such
as might occur following a database restore operation, causes the AIJ recovery
operation to simulate an AIJ backup operation by creating a new version of the
existing AIJ journal. The new journal is created so that the data in the existing
AIJ journal is not lost. This allows repeated database restore operations to work
properly.

Note

The result of this change is that the AIJ recovery operation can create
new AIJ journals following a database restore operation. Ensure that
adequate disk space exists, or the AIJ recovery operation will terminate.

Consider the following scenario. A database with five AIJ journals fails due to
disk failure. At the time of the failure, the AIJ journal state is the following:

Node: BONZ Oracle Rdb V6.1-00 Performance Monitor 20-JAN-1996 06:17:18
Rate: 1.00 Second AIJ Information Elapsed: 00:00:06.79
Page: 1 of 1 KODA$:[R_ANDERS.WORK]MF_PERSONNEL.RDB;2 Mode: Online
--
Journaling: Enabled Shutdown: 60 Notify: Enabled State: Accessible
ALS: Manual ABS: Disabled ACE: Disabled FC: Enabled CTJ: Disabled

After-Image.Journal.Name....... SeqNum AIJsize CurrEOF Status. State.......
RICK1 Unused 512 Empty Latent Accessible
RICK2 Unused 512 Empty Latent Accessible
RICK3 Unused 512 Empty Latent Accessible
RICK4 4 *BACKUP NEEDED* Written Accessible
RICK5 5 512 Unknown Current Accessible
Available AIJ slot 1
Available AIJ slot 2
Available AIJ slot 3
Available AIJ slot 4
Available AIJ slot 5
Available AIJ slot 6

3–64 Software Errors Fixed

--

In the previous screen, journal #5 is current while journal #4 needs backup.

The following screen shows the AIJ state after the database restore operation:

Node: BONZAI Oracle Rdb V6.1-00 Performance Monitor 20-JAN-1996 06:21:37
Rate: 1.00 Second AIJ Information Elapsed: 00:00:07.92
Page: 1 of 1 KODA$:[R_ANDERS.WORK]MF_PERSONNEL.RDB;2 Mode: Online
--
Journaling: Enabled Shutdown: 60 Notify: Enabled State: Accessible
ALS: Manual ABS: Disabled ACE: Disabled FC: Enabled CTJ: Disabled

After-Image.Journal.Name....... SeqNum AIJsize CurrEOF Status. State.......
RICK1 6 512 Unknown Current Accessible
RICK2 Unused 512 Empty Latent Accessible
RICK3 Unused 512 Empty Latent Accessible
RICK4 4 *BACKUP NEEDED* Written Accessible
RICK5 5 *BACKUP NEEDED* Written Accessible
Available AIJ slot 1
Available AIJ slot 2
Available AIJ slot 3
Available AIJ slot 4
Available AIJ slot 5
Available AIJ slot 6

--

Note that AIJ journaling was enabled by the database restore operation, which
results in journal #6 being activated and becoming current. However, recovery of
the AIJ journals begins with AIJ sequence #0, as described by the RMU Dump
Header command.

The following example shows the normal results of recovering the first AIJ
backup file:

$ RMU/RECOVER/LOG backup1.aij
%RMU-I-LOGRECDB, recovering database file KODA1:[R_ANDERS.WORK]MF_PERSONNEL.RDB;2
%RMU-I-LOGOPNAIJ, opened journal file KODA$:[R_ANDERS.WORK]BACKUP1.AIJ;1
%RMU-I-AIJONEDONE, AIJ file sequence 0 roll-forward operations completed
%RMU-I-LOGRECOVR, 1 transaction committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 1 transaction ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence number

needed will be 1
%RMU-I-AIJALLDONE, after-image journal roll-forward operations completed
%RMU-I-LOGSUMMARY, total 1 transaction committed
%RMU-I-LOGSUMMARY, total 0 transactions rolled back
%RMU-I-LOGSUMMARY, total 1 transaction ignored
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJFNLSEQ, to start another AIJ file recovery, the sequence number

needed will be 1

The following example shows the results of recovering the second AIJ backup file.
This example is important because it demonstrates the new behaviour where a
new AIJ journal is created to simulate the backup of AIJ journal #4 and journal
#5.

$ RMU/RECOVER/LOG backup2.aij
%RMU-I-LOGRECDB, recovering database file KODA1:[R_ANDERS.WORK]MF_PERSONNEL.RDB;2
%RMU-I-LOGOPNAIJ, opened journal file KODA$:[R_ANDERS.WORK]BACKUP2.AIJ;1

Software Errors Fixed 3–65

%RMU-I-AIJONEDONE, AIJ file sequence 1 roll-forward operations completed
%RMU-I-AIJONEDONE, AIJ file sequence 2 roll-forward operations completed
%RMU-I-AIJONEDONE, AIJ file sequence 3 roll-forward operations completed
%RMU-I-LOGRECOVR, 6 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence number

needed will be 4
%RMU-I-AIJAUTOREC, starting automatic after-image journal recovery
%RMU-I-LOGOPNAIJ, opened journal file KODA1:[R_ANDERS.WORK]RICK4.AIJ;3
%RMU-I-AIJONEDONE, AIJ file sequence 4 roll-forward operations completed
%RMU-W-AIJDEVDIR, AIJ filename "RICK4.AIJ" does not include device and

directory
%RMU-I-LOGCREAIJ, created after-image journal file
KODA1:[R_ANDERS.WORK]RICK4.AIJ;4
%RMU-I-LOGMODSTR, created after-image journal "RICK4"
%RMU-I-LOGRECOVR, 3 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence number

needed will be 5
%RMU-I-LOGOPNAIJ, opened journal file KODA1:[R_ANDERS.WORK]RICK5.AIJ;2
%RMU-I-AIJONEDONE, AIJ file sequence 5 roll-forward operations completed
%RMU-W-AIJDEVDIR, AIJ filename "RICK5.AIJ" does not include device and

directory
%RMU-I-LOGCREAIJ, created after-image journal file

KODA1:[R_ANDERS.WORK]RICK5.AIJ;3
%RMU-I-LOGMODSTR, created after-image journal "RICK5"
%RMU-I-LOGRECOVR, 0 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence number

needed will be 5
%RMU-I-AIJALLDONE, after-image journal roll-forward operations completed
%RMU-I-LOGSUMMARY, total 9 transactions committed
%RMU-I-LOGSUMMARY, total 0 transactions rolled back
%RMU-I-LOGSUMMARY, total 0 transactions ignored
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJFNLSEQ, to start another AIJ file recovery, the sequence number

needed will be 5

The following example from the Performance Monitor shows the AIJ state after
the database recovery operation:

Node: BONZAI Oracle Rdb V6.1-00 Performance Monitor 20-JAN-1996 06:32:52
Rate: 1.00 Second AIJ Information Elapsed: 00:00:06.98
Page: 1 of 1 KODA$:[R_ANDERS.WORK]MF_PERSONNEL.RDB;2 Mode: Online
--
Journaling: Enabled Shutdown: 60 Notify: Enabled State: Accessible
ALS: Manual ABS: Disabled ACE: Disabled FC: Enabled CTJ: Disabled

After-Image.Journal.Name....... SeqNum AIJsize CurrEOF Status. State.......
RICK1 6 512 Unknown Current Accessible
RICK2 Unused 512 Empty Latent Accessible
RICK3 Unused 512 Empty Latent Accessible
RICK4 Unused 512 Empty Latent Accessible
RICK5 Unused 512 Empty Latent Accessible
Available AIJ slot 1
Available AIJ slot 2
Available AIJ slot 3
Available AIJ slot 4
Available AIJ slot 5
Available AIJ slot 6

3–66 Software Errors Fixed

--

As you can see, AIJ journals sequence #4 and sequence #5 have been backed up.

However, in the directory there are two RICK4 and RICK5 AIJ journals.
RICK4.AIJ;3 and RICK5.AIJ;2 are the original AIJ journals known to the
database backup operation. RICK4.AIJ;4 and RICK5.AIJ;3 are the new AIJ
journals created by the AIJ recover operation to simulate the backup of the
original AIJ journals in a nondestructive manner.

3.3.7 Performance Monitor Uses RDMS$BIND_STATS_DISABLED Correctly
In previous versions, if the RDMS$BIND_STATS_DISABLED logical name or
the RDB_BIND_STATS_DISABLED configuration parameter was defined, the
Performance Monitor did not allow the user to monitor the database.

This problem has been corrected in V7.0.

3.3.8 Fixed-Size AIJ Backup to Tape No Longer Ignores Active Checkpoints
In previous versions, when using the Format=New_Tape qualifier to back up
fixed-size .aij files, regardless of whether the backup file was a magnetic tape or a
disk device, the AIJ backup utility did not wait for active checkpoints to migrate
from the .aij file being backed up.

This problem could result in the database being nonrecoverable if any of the
processes with the active checkpoint failed subsequent to the AIJ backup
operation. The database recovery (DBR) process would be unable to redo
the failed processes’ committed transactions.

The following example shows a user with an active checkpoint on the .aij file that
has a sequence number of 15. Then, the AIJ backup command successfully backs
up this .aij file, even though it is not supposed to do so.

$ RMU/DUMP/USER DATABASE.RDB
Active user with process ID 404003D2

Stream ID is 1
Monitor ID is 1
Transaction ID is 361
Recovery journal filename is
"EBS$PRODUCTION_DATA_ROOT1:[RDM$RUJ]EXC_DB$0099899462E20C2B.RUJ;1"
Read/write transaction in progress
Last AIJ checkpoint 15:3 <=================
Transaction sequence number is 170611

$ RMU /BACKUP /AFTER /QUIET /LOG /LABEL=(PRDB01) -
/FORMAT=NEW_TAPE DATABASE.RDB 1MUA0:P01EXC_DB951031

%RMU-W-NAMTRUNC, File name truncated, 1MUA0:[000000]P01EXC_DB951031.AIJ_RBF;
%RMU-I-AIJBCKBEG, beginning after-image journal backup operation
%RMU-I-AIJBCKSEQ, backing up after-image journal sequence number 15
%RMU-I-LOGBCKAIJ, backing up after-image journal EXC_AIJ_03 at 02:13:57.55
%RMU-I-AIJBCKEND, after-image journal backup operation completed successfully
%RMU-I-LOGAIJJRN, backed up 1 after-image journal at 02:15:16.57
%RMU-I-LOGAIJBLK, backed up 113997 after-image journal blocks at 02:15:16.57
%RMU-W-NAMTRUNC, File name truncated, 1MUA0:[]P01EXC_DB951031.AIJ_RBF;

The workaround was to back up the .aij files to disk, using the Format=Old_Rms
qualifier, then copy the disk backup file to magnetic tape.

This problem has been corrected in V7.0. The AIJ backup utility now properly
waits for checkpoint migration for all types of backup media operations.

Software Errors Fixed 3–67

3.3.9 DBR No Longer Bugchecks During Extensible AIJ Backup
In previous versions, under extremely rare circumstances, the database recovery
(DBR) process could have bugchecked attempting to redo a transaction for a
failed process.

This problem only occurred during an AIJ backup of an extensible .aij file when
the fast commit feature was enabled.

This problem has been corrected in V7.0. The DBR process correctly redoes the
transaction of the failed process.

3.3.10 RMU Backup Command No Longer Deadlocks During Extensible AIJ
Backup

In previous versions, a deadlock situation could have occurred while backing up
an extensible .aij file.

The problem occurred when the Fast Commit option was enabled and at least one
active checkpoint operation was found. The problem occurred only when the AIJ
data needed to be moved from the active AIJ file to the new AIJ file, such that an
AIJ extension operation occurred.

The workaround was to increase the size of the AIJ journal initial allocation.

This problem has been corrected in V7.0.

3.3.11 Quiet-Point AIJ Backups Spanning Transactions Can Now Be Applied
In previous versions, in certain situations, an .aij file created using a quiet-point
backup could not be rolled forward by itself because it spanned transactions. The
journal had to be applied in conjunction with some previous .aij file. This problem
involved the RMU Recover, RMU Backup After_Journal, RMU Copy, RMU Move,
and RMU Set After_Journal commands.

This problem has been corrected in V7.0.

3.3.12 Time Reduced for AIJ Journal Creation and Extension
In previous versions, the time needed to create an .aij file or to extend a fixed-size
.aij file was excessive. Preliminary analysis showed that .aij files were created at
an approximate average rate of 500-650 blocks per second. This problem involved
the RMU Set After_Journal, the RMU Backup After_Journal commands, and the
SQL and RDO interfaces.

The following table shows performance measurements obtained when a 96,000
block .aij file was created during a relatively light usage period:

Oracle Rdb V6.1 Test #1 Test #2 Test #3
Test
#4

#Buffered I/O 79 79 79 80

#Direct I/O 1076 1076 1059 1020

Elapsed CPU Time 1.46 1.43 1.70 1.51

Elapsed Wall Time 1:28.61 2:03.66 2:53.66 2:47.03

CPU Utilization 1% 1% 0% 0%

Blocks Per Second 1090 780 554 574

3–68 Software Errors Fixed

The .aij file creation and extension algorithm has been optimized to use
overlapping initialization and I/O operations. The result is a substantial decrease
in the overall time required to create or to extend .aij files

Using the same data, the following table shows the new performance information.
Performance results depend on a variety of factors—your actual performance may
vary from the information presented here.

Oracle Rdb V7.0 Test #1 Test #2 Test #3
Test
#4

#Buffered I/O 80 80 80 80

#Direct I/O 1023 864 861 864

Elapsed CPU Time 2.31 2.20 2.37 2.32

Elapsed Wall Time 56.70 54.92 54.46 54.19

CPU Utilization 4% 4% 4% 4%

Blocks Per Second 1714 1777 1777 1777

Further analysis reveals that, depending on the disk device used for testing,
1777 blocks per second is the highest achievable performance possible. Obviously,
performance increase scales according to the performance of the disk device used.

3.3.13 Determining the True Size of Current .aij File

OpenVMS
VAX

OpenVMS
Alpha

After upgrading to Oracle Rdb V6.0-5, a user could no longer determine the
size of the current .aij file. The user had a process running on Oracle Rdb V4.x
that could watch the number of used blocks of an .aij file and, when a threshold
was crossed, the process started an automatic .aij backup (which then reset
the number of used blocks downward). After upgrading to Oracle Rdb V6.0-
5, the number of allocation blocks and the number of used blocks are equal,
therefore the user’s process tried to back up the .aij file every time it woke up.
This problem involved the RMU Show After_Journal Backup_Context and RMU
Backup After_Journal commands.

The workaround was to parse the output from the RMU Dump Header command.
The RMU Dump Header command displayed information about the size of each
.aij file, including its percentage of fullness.

The problem has been corrected in V7.0. Two new process global symbols have
been added to the RMU Show After_Journal command with the Backup_Context
qualifier and the RMU Backup After_Journal command. They provide a reliable
method to determine size of current .aij file, as follows:

• RDM$AIJ_ENDOFFILE—identifies the end of file block number for the
current .aij file

• RDM$AIJ_FULLNESS —identifies the percentage of fullness of the current
.aij file

These new symbols work for both extensible and fixed-size .aij files.

The following example shows the command that initializes the backup context
and defines the process global AIJ symbols:

$ RMU/SHOW AFTER_JOURNAL/BACKUP_CONTEXT/OUT=NL: MF_PERSONNEL

Software Errors Fixed 3–69

The following example shows the output from the DCL SHOW SYMBOL
command:

$ SHOW SYMBOL RDM$AIJ*
RDM$AIJ_COUNT == "5"
RDM$AIJ_CURRENT_SEQNO == "10"
RDM$AIJ_ENDOFFILE == "329" <-- NEW!
RDM$AIJ_FULLNESS == "64" <-- NEW!
RDM$AIJ_LAST_SEQNO == "9"
RDM$AIJ_NEXT_SEQNO == "6"

In the previous example, the .aij file whose sequence number is "10" (RDM$AIJ_
CURRENT_SEQNO) is currently 64% full (RDM$AIJ_FULLNESS) at 329 blocks
(RDM$AIJ_ENDOFFILE).

Remember that the process global symbols are created as strings, and must
be converted into numeric symbols if they are to be compared with computed
symbols. ♦

3.3.14 AIJ Rollforward Can Start from Quiet-Point AIJ Backup or Quiet-Point
Database Backup

In previous versions, the rollforward of an .aij file always started with an
AIJ backup quiet-point, even if the database was restored using a quiet-point
database backup.

The following figure demonstrates the problem more clearly:

AIJ0 AIJ1 AIJ2
| | |
Time--------------[1]------------------[2]--------------[3]-----[4][5]----->

| | | | | |
| | | | | |
| Backup AIJ | Database | Backup AIJ
| No Quiet-Point | Full Backup | No quiet-Point
| | |
|<------------------>| |<---------------

Start Long Update End Update Start Long Update
Transaction Transaction Transaction

The following explains the steps Oracle Rdb used:

1. Performed a no-quiet-point AIJ backup (using the RMU Backup After_
Journal command with the Noquiet_Point qualifier) for AIJ0 (current). At
that moment, transactions spanned AIJ0 and AIJ1.

2. Performed a full quiet-point database backup.

3. Performed a no-quiet-point AIJ backup for AIJ1 (current). At that moment,
transactions spanned AIJ1 and AIJ2.

4. The database became unavailable due to catastrophic node failure.

5. Immediately started a restore from a full database backup file [4] and
subsequent AIJ recovery.

The following AIJ journal sequence information was extracted using the RMU
Dump After command:

3–70 Software Errors Fixed

- AIJ0
AIJ Sequence Number is 0
Open mode is Initial

- AIJ1
AIJ Sequence Number is 1
Transaction from AIJ sequence number 0 may span into this journal
Open mode is Continuation

At the time of the full database backup (Step 2), the current .aij file was AIJ1, so
both AIJ1 and AIJ2 were needed for the recovery (Step 5). However, the RMU
Recover command required AIJ0 as a first .aij file, even though the database was
restored using the quiet-point database backup file.

The workaround was to start the AIJ rollforward operation using the latest
quiet-point AIJ backup. It was recommended that a quiet-point AIJ backup
operation always preceed a quiet-point database backup operation. In addition, if
you were going to perform a quiet-point database backup, it was better to perform
a quiet-point AIJ backup operation followed by a no-quiet-point database backup
operation. This resulted in the same number of quiet-points and simplified the
AIJ rollforward requirements.

This problem has been corrected in V7.0.

The AIJ rollforward operation can start from either a quiet-point AIJ backup or a
no-quiet-point AIJ backup:

• If a no-quiet-point database backup file is restored, the AIJ rollforward
operation must start from the preceding quiet-point AIJ backup file.

• If a quiet-point database backup file is restored, the AIJ rollforward operation
can start from the .aij file that was active at the time of the database backup
operation, even if it was not created with a quiet-point AIJ backup operation.

You can determine if the the backup file was restored from a quiet-point or
no-quiet-point backup operation by using the RMU Dump Header command.

The RMU Dump Header command displays the following message when a no-
quiet-point database backup file has been restored, indicating that you must start
the AIJ rollforward from a quiet-point AIJ backup file:

AIJ roll-forward is no-quiet-point enabled

The RMU Dump Header command displays the following message when a quiet-
point database backup file has been restored, allowing you to start the AIJ
rollforward from a quiet-point or no-quiet-point AIJ backup file:

AIJ roll-forward is quiet-point enabled

3.3.15 RMU Set Audit Stop Command Now Stops Auditing of RMU Commands

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, if auditing of RMU commands was enabled for a database
and auditing was started, the RMU Set Audit Stop command did not stop
auditing RMU commands. The command did stop other types of auditing
correctly.

The following is an example of unwanted alarms:

$ REPLY/ENABLE=SECURITY
$ RMU/SET AUDIT/EVERY/FLUSH/ENABLE=RMU mf_personnel
$ RMU/SET AUDIT/START mf_personnel
$!
$! The following should have stopped any alarms:
$ RMU/SET AUDIT/STOP mf_personnel

Software Errors Fixed 3–71

A workaround was to use the RMU Set Audit command with the Disable qualifier.

This problem has been corrected in V7.0. ♦

3.3.16 Bugcheck at RDMS$$KOD_ISCAN_START_SCAN + AC

OpenVMS
Alpha

In previous versions, the RMU Verify Constraints command sometimes failed on
OpenVMS Alpha with a bugcheck at RDMS$$KOD_ISCAN_START_SCAN + AC
because of some particular constraints and indexes.

The following example shows the problem:

SQL> CREATE DATABASE FILENAME TST
cont> CREATE TABLE t (
cont> F1 INTEGER,
cont> F2 INTEGER,
cont> CONSTRAINT C_CHECK1
cont> CHECK(((T.F1 <> 0)
cont> AND (NOT (T.F1 IS NULL))))
cont> DEFERRABLE);
SQL> CREATE INDEX I_f1 on t (f1);
SQL> COMMIT;

$ RMU/VERIFY/CONSTRAINT TST
%RDMS-I-BUGCHKDMP, generating bugcheck dump file disk:[dir]RDSBUGCHK.DMP;
%RMU-W-CNSTVERER, verification of constraints is incomplete due to errors.
%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual address=500196A0, PC
=00000000, PS=00000000

A workaround was to drop the index before verifying the constraints.

This problem has been corrected in V7.0. ♦

3.3.17 Oracle RMU for Digital UNIX Now Translates Environment Variables in
.sqlrc Configuration File

Digital UNIX In V6.1, Oracle RMU for Digital UNIX did not translate environment variables
in the .sqlrc file for database names given on the command line. This was
inconsistent with SQL behavior and was inconvenient for users.

This problem has been corrected for V7.0 on Digital UNIX. ♦

3.3.18 RMU Show Statistics with Input Qualifier No Longer Fails

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, when the RMU Show Statistics command with the
Input=file qualifier was used to display a binary statistics file collected on
another system, RMU sometimes failed while attempting to find database files to
which the binary collection file referred.

The following example shows how this problem occurred:

On system S1:

$ RMU/SHOW STAT/OUTPUT=MAIN.STATS/OPTIONS=(BASE,AREA) PERSONNEL

On system S2:

$ COPY S1::MAIN.STATS []
$ RMU/SHOW STAT/INP=MAIN.STATS
%RMS-F-DNF, Directory not found
-SYSTEM-W-NOSUCHFILE, No such file
%RMU-F-FATALOSI, Fatal error from the operating system interface.

A workaround was to display the binary statistics file from the same system
where it was collected.

3–72 Software Errors Fixed

This problem has been corrected in V7.0. Oracle RMU now attempts to find the
database file on the system, and if it does not, Oracle RMU continues rather than
aborting. ♦

3.3.19 Performance Monitor Starts Up More Quickly
In previous versions, the time required to display the first Performance Monitor
screen increased as the number of database storage areas increased.

This problem has been corrected in V7.0. The Performance Monitor has been
enhanced to perform as little up-front initialization as possible. Now, the screen
initialization algorithms are performed when the screen is displayed for the first
time. As a result, the Performance Monitor never initializes the screens that are
not actually displayed.

Note

Selecting Options on the horizontal menu to write all screens causes each
screen’s initialization to be performed.

3.3.20 Oracle RMU Now Clears Snapshot, SPAM Pages from CPT During RMU
Repair Command

Oracle Rdb inserts an entry in the corrupt page table (CPT) for any corrupt
page it encounters. The RMU Repair command can be used to repair these
corrupt pages, but, in previous versions, the corresponding entries in the CPT
were not removed for snapshot, SPAM, or ABM pages. In addition, the RMU
Set Corrupt_Pages command did not allow manipulation of snapshot pages,
preventing snapshot page entries from being manually removed from the CPT.

The RMU Repair command has been corrected to clear the entries in the CPT for
pages it has repaired. The RMU Set Corrupt_Pages command has been modified
so that snapshot pages can be removed manually from the CPT.

3.3.21 Corrupt Pages in Snapshot Areas Can Now Be Removed
Beginning with V6.0, Oracle Rdb maintained a corrupt page table (CPT) to
record pages that had checksum errors on them. Entries were removed from the
CPT when the page was no longer corrupt, usually a result of an RMU Restore
operation. However, entries for corrupt pages in snapshot areas could not be
removed. This caused bugchecks for any process that tried to read the pages
marked as corrupt.

This problem has been corrected in V7.0. You can now remove entries for
snapshot pages from the CPT by using the Initialize=Snapshot qualifier of the
RMU Repair command. Oracle Rdb removes any entries in the CPT for snapshot
areas that are initialized by this command.

3.3.22 RMU Monitor Logging No Longer Disables Over Time

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, monitor logging disabled itself over time for no apparent
reason when you used the RMU Monitor command, even though there was ample
space on the log device. Occasionally, restarting the log worked, but only for a
short time. This problem usually occurred when the monitor was very busy.

This problem has been corrected in V7.0. ♦

Software Errors Fixed 3–73

3.3.23 RMU Analyze Cardinality Update Command Correctly Updates
Cardinality

OpenVMS
Alpha

In previous versions, the RMU Analyze Cardinality Update command did
not always update cardinality correctly. This command correctly updated the
cardinality only when a table that had compression enabled or a hash index was
included in the list of tables and indexes to analyze. If the list included at least
one such table or index, the cardinality for all tables and indexes was updated
correctly.

The workaround was to include a table that had compression enabled or a hash
index in the list of objects to analyze when you updated cardinality.

This problem has been corrected in V7.0. ♦

3.3.24 Changes to Header in RMU Analyze Output
Minor changes have been made to the output from the RMU Analyze command.
Now, RMU Analyze prints the current date and time in the header for the output.
This allows you to know how recent or stale the data is in an output file. Also,
when generating area reports, RMU now includes the name of the database in the
report header. The name of the database is already displayed for index reports
and placement reports. Note that the examples in the documentation do not show
these new features because they are late-breaking product enhancements.

The following example shows the start of the output for an area report generated
by RMU Analyze.

$ RMU /ANALYZE MF_PERSONNEL

Areas for database - USER:[DB]MF_PERSONNEL.RDB;1
Created 16-AUG-1996 01:18:06.70

--

Storage analysis for storage area: RDB$SYSTEM - file: US:[DB]MF_PERS_DEFAULT.RDA
.
.
.

3.3.25 RMU Unload Command No Longer Pads VARCHAR Fields When
Producing Delimited Text Files

In previous versions, VARCHAR columns expanded to their maximum size when
the RMU Unload command produced a delimited text output file.

This problem has been corrected in V7.0; VARCHAR columns are no longer
padded when unloaded into a delimited text unload file.

For example, if "ABC" is stored in a VARCHAR(10) column, previous versions of
Oracle Rdb produced the following formatting for the RMU Unload command:

"ABC ".

Now, the RMU Unload command shows the column without the padding:

"ABC".

There was no workaround for this problem. Users who need to preserve the old
behavior within V7.0 must unload data through a view of the unloaded table in
which all VARCHAR fields are cast as CHAR fields.

3–74 Software Errors Fixed

3.3.26 RMU Checkpoint Command Now Allows No Wait for Completion
In previous versions, the RMU Checkpoint command always waited for the
total system checkpoint completion. Often, it was desirable to not perform the
checkpoint synchronously, but try to see if the checkpoint operation was possible.

This problem has been corrected in V7.0. The RMU Checkpoint command now
accepts a [No]Wait qualifier, which indicates whether or not the utility is to wait
for checkpoint completion. The default qualifier is Wait.

3.3.27 DBR No Longer Bugchecks Trying to Fetch Inconsistent Pages
In previous versions, when a user atempted to recover an inconsistent page
with the RMU Recover command, the database recovery (DBR) process crashed
attempting to fetch the inconsistent page. The RMU Recover command attempted
an attach that triggered the DBR process, which bugchecked trying to access the
inconsistent page. The monitor shut down the database and the RMU Recover
command was forced out of the database.

The following shows an example of this problem:

$ SQL$
SQL> ALTER DATABASE FILE mf_personnel
cont> JOURNAL FILE jour1.aij
cont> JOURNAL ALLOCATION IS 20000 BLOCKS;
SQL> EXIT
$ RMU/BACKUP mf_personnel mf_personnel
$ sql$
SQL> ATTACH ’FILE mf_personnel’;
SQL> -- get the area and page numbers that contain relevant records
SQL> SELECT DBKEY FROM EMPLOYEES WHERE EMPLOYEE_ID > ’00400’;
SQL> COMMIT;
SQL> UPDATE EMPLOYEES SET SEX=’M’ WHERE EMPLOYEE_ID > ’00400’;
SQL> COMMIT;
SQL> DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID > ’00400’;

At this point, suppose the monitor on the current node was killed (as in a node
crash). If the database was not in use on any other node, the recovery of the user
takes place only when another attach was requested.

Suppose one of the pages affected by the deletion operation was page 371 of
storage area EMPIDS_OVER. Suppose you made the page corrupt and then
restored it so that it was marked inconsistent:

$ RMU/ALTER mf_personnel
RdbALTER> area EMPIDS_OVER
RdbALTER> page 371
RdbALTER> dep checksum=12345678
RdbALTER> commit
RdbALTER> exit
$
$ RMU/RESTORE/NORECOVER/AREA mf_personnel.rbf EMPIDS_OVER/JUST_PAGES=371

Next, suppose you tried to recover the page (to make it consistent). The attach
caused the monitor to start a DBR process to undo the user (who was active when
the database was shutdown). However, because that user had touched the same
page (page 371 of EMPIDS_OVER) and the page was marked inconsistent, the
DBR process crashed when it tried to access the page. Then, the monitor shut
down the database. The RMU Recover attach, which waited for the DBR process
to complete successfully, was forced out of the database.

$ RMU/RECOVER/JUST_PAGES jour1.aij

Software Errors Fixed 3–75

The workaround was to make the user temporarily non-recoverable, by removing
the .ruj file name from the root file. Then, the RMU Recover attach did not
trigger the DBR process. Once the RMU Recover made the pages and areas
consistent, the root file was altered to add the .ruj file name. A subsequent
attach request triggered the DBR process and the DBR process recovered the user
successfully.

This problem has been corrected in V7.0.

3.3.28 Database Recovery No Longer Runs with DBKEY SCOPE IS ATTACH
Properties

In previous versions, the database recovery (DBR) process sometimes bugchecked
when trying to insert a record because of a lack of space on the page after a crash.

This occurred when the following conditions were true:

• You attached to the database using the DBKEY SCOPE IS TRANSACTION
clause of the SQL ATTACH statement.

• You specified the JOURNAL FAST COMMIT ENABLED clause of the ALTER
DATABASE statement.

• The system crashed after the transaction committed and inserted the record
into a database page but before the page was written back to disk.

The exception occurred at DBR$DO_C_AIJBUF + 2B0.

The workaround was to avoid the problem by using the DBKEY SCOPE IS
ATTACH clause, instead of the DBKEY SCOPE IS TRANSACTION clause.
However, once the problem occurred, there was no workaround.

This problem has been corrected in V7.0. The DBR process never considers the
dbkey scope to be attach.

3.3.29 RMU Show After_Journal Backup_Context Command Properly Creates
and Deletes Process Global Symbols

In V6.1, the process global symbols RDM$AIJ_BACKUP_SEQNO and RDM$AIJ_
SEQNO incorrectly remained defined after the following sequence of commands:

$ RMU/SHOW AFTER_JOURNAL/BACKUP_CONTEXT DB_WITHOUT_AIJ
$ SHOW SYMBOL RDM$AIJ* => 4 SYMBOLS DEFINED

$ RMU/SHOW AFTER_JOURNAL/BACKUP_CONTEXT DB_WITH_AIJ
$ SHOW SYMBOL RDM$AIJ* => 6 SYMBOLS DEFINED

$ RMU/SHOW AFTER_JOURNAL/BACKUP_CONTEXT DB_WITHOUT_AIJ
$ SHOW SYMBOL RDM$AIJ* => 6 SYMBOLS DEFINED INSTEAD OF 4

The problem has been corrected in V7.0. The proper process global symbols are
now created and deleted appropriately for the state of the after-image journal
(.aij) subsystem.

3.3.30 Now You Can Invoke Many Simultaneous Database Attach and Detach
Operations While Using the RMU Show Users Command

Prior to V7.0, a monitor bugcheck error occurred when a monitor performed many
simultaneous database attach or detach operations, including database recovery
(DBR) processes. The problem occurred more frequently if the operations occurred
at the same time you were using the RMU Show Users command.

3–76 Software Errors Fixed

The following example shows the MONITOR bugcheck problem:

...
Saved PC = 00021AC0 : KOD$BUGCHECK_AND_EXIT_HNDLR + 0000002C
ARG# Argument [data...] ---
1 7FF09884: 00000000 056EC02C 00000001 03C00000 00016F04 056EC02C 00000003

...

Saved PC = 0001A6DC : MONITOR + 0000065C
ARG# Argument [data...] ---
1 7FF09884: 00000000 056EC02C 00000001 03C00000 00016F04 056EC02C 00000003
2 7FF0986C: 00000003 03000001 00000002 00000003 00000002 7FF09998 00000004

...

***** Exception at 00016F04 : COSI_CHF_SIGNAL + 00000042
%COSI-F-BUGCHECK, internal consistency failure

Handler = 00000000, PSW = 0000, CALLS = 0, STACKOFFS = 0
Saved AP = 7FF0990C, Saved FP = 7FF098E8, PC Opcode = 05
140 bytes of stack data from 7FF0985C to 7FF098E8:

...

Saved PC = 80000014 : S0 address
ARG# Argument [data...] ---
1 00000001

...

Saved PC = 0000ECA1 : COSI_TINCAN_FREE_BUFFER + 00000055
ARG# Argument [data...] ---
1 001159DC: 38363037 30323132 00000010 00000001 21207068 0000017C 00133140
2 7FF09958: 00000000 00000000 7FF09974 03040004 00000000 00000001 00000000

...

The problem has been corrected in V7.0. The user interface has not changed as a
result of the correction.

3.3.31 RMU Extract Command with Item=Security Qualifier Now Generates
Correct DCL Syntax

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, the table name extracted by the RMU Extract command
with the Item=Security qualifier was not processed correctly, and may have
contained trailing spaces or other non-printing characters.

The following excerpt of a script generated by the RMU Extract command shows
the table named COLLEGES followed by a trailing space:

$ RMU/EXTRACT/ITEM=SECURITY MF_PERSONNEL
.
.
.

$ RMU/SET AUDIT/TYPE=AUDIT -
/ENABLE=DACCESS=COLUMN=(COLLEGES .COLLEGE_CODE,COLLEGES .COLLEGE_NAME) -
/PRIV=(SELECT,INSERT,UPDATE) -
RDB$ROOT2:[70]MF_PERSONNEL.RDB;3

The workaround was to manually edit the script file generated by the RMU
Extract command. This problem has been corrected in V7.0. ♦

3.3.32 RMU Extract Command with the Option Qualifier Processes Keywords
Correctly

In V6.1, an error in the Option qualifier on the RMU Extract command caused
keywords to be incorrectly translated and resulted in unexpected output.
The problem occurred because the Option keyword decoding table incorrectly
processed and translated keywords to the wrong internal setting.

This problem has been corrected in V7.0.

Software Errors Fixed 3–77

Also, note that the Option=Debug qualifier now causes Oracle RMU to output a
new option-verification dump that shows the internal settings options, including
default options and options that were explicitly specified.

3.3.33 RMU Recover Resolve Can Now Resolve Transactions Originated from
Different Systems

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, the RMU Recover Resolve command failed because it could
not identify the participant node when it attempted to rollforward an .aij file that
contained an unresolved distributed transaction from a system other than the one
on which it was originated.

The following example shows the problems that might be caused by this failure:

$ RMU/RESTORE/NOCDD/DIR=DISK$:[USER] DB1905.RBF
$ RMU/RECOVER/ROOT=DISK$:[USER]DB.RDB DB0406.AIJ
$ RMU/RECOVER/ROOT=DISK$:[USER]DB.RDB DB.AIJ

The second recovery operation ended with the following:

%RMU-I-AIJONEDONE, AIJ file sequence 57 roll-forward operations completed
%RMU-I-LOGRECOVR, 35 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU-I-AIJACTIVE, 1 active transaction not yet committed or aborted
%RMU-I-LOGRECSTAT, transaction with TSN 1385214 is active
%RMU-I-AIJPREPARE, 1 of the active transaction prepared but not yet committed
or aborted
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence number
needed will be 58
%RMU-F-PARTDTXNERR, error trying to participate in a distributed transaction
-SYSTEM-F-UNREACHABLE, remote node is not currently reachable
$
$ RMU/DUMP/AFTER_JOURNAL/STATE=PREPARED DB.AIJ

1/1 TYPE=O, LENGTH=510, TAD=11-MAY-1995 04:23:37.23, CSM=00
Database 1DKB0:[PILBA5.EXP]DB.RDB;1
Database timestamp is 30-SEP-1993 11:12:11.36
Facility is "RDMSAIJ ", Version is 601.0
AIJ Sequence Number is 57
Last Commit TSN is 1385212
Synchronization TSN is 0
Type is Normal (unoptimized)
Open mode is Initial
Backup type is Active
I/O format is Record
Commit-to-Journal optimization disabled

66/141 TYPE=C, LENGTH=18, TAD=11-MAY-1995 04:30:38.21, CSM=00
TSN=1385214

2034514353410D9111CE8B49E556C54A TID: ’JÅVåI.Î...ASCQ4 ’
315245474F525E8E11CE3EB345448AED TM LOG_ID: ’í.DE³>Î..^ROGER1’
00000000000000000000000600000691 RM LOG_ID: ’................’
0020202020202020304241494B0200DD RM_NAME: ’..KIAB0 .’
000000000006000100000011089C0000 RM_NAME: ’................’

3451435341 NODE NAME: ’ASCQ4’
3451435341 PARENT NODE NAME: ’ASCQ4’

In this example, the database was left in a corrupt state:

SQL> attach ’filename DB’;
%SQL-F-ERRATTDEC, Error attaching to database DB
-RDB-F-DB_CORRUPT, database filename is corrupt
-RDMS-F-AREA_CORRUPT, storage area DISK$:[USER]DB.RDB;1 is corrupt
SQL>

The workaround was to create a DECnet node on the new system with the same
node name used to prepare the transaction.

3–78 Software Errors Fixed

This problem has been corrected in V7.0. The RMU Recover Resolve command
now allows manual resolution of prepared distributed transactions, even on
systems not originally involved in the transaction. ♦

3.4 RdbPRE, RDML, and RDO Errors Fixed
This section describes problems that have been fixed in the RdbPRE, RDML, and
RDO interfaces.

3.4.1 Alignment of Host Variable Smallint in the RDBPRE Preprocessor

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, with the RDBPRE preprocessor, host variables of the data
type smallint (word) were not aligned on word boundaries on OpenVMS and
would generate the following error:

.INTEGER *2 MESSAGE1_1_VAR12

...................^
%FORT-W-MISALIGN, Alignment of variable or array is inconsistent with its data
type

The problem occurred when a smallint data type followed a string. The string
allocated correctly, but the smallint was not aligned on a word boundary.

This problem is corrected in Oracle Rdb V7.0. ♦

3.4.2 RDO MATCHING Operator Can Now Find Date Matches

OpenVMS
Alpha

In previous versions, the RDO MATCHING operator may have failed to find date
matches, when applied to certain types of nontext data.

The following example shows a command that would have failed:

for s in salary_history with s.salary_start
matching "1982%%%%00000000" print s.* end_for

This problem has been corrected in V7.0. ♦

3.4.3 RDML/Pascal Now Correctly Generates Casting

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, RDML/Pascal incorrectly generated casting for the whole
record. For example, for the field PER_REC.BIRTHDAY, RDML generated the
following:

RDB$MSG_PORT_1_1.RDB$PORT_FIELD_1
:= PER_REC::RDML$CDDADT_TYPE.BIRTHDAY;

Now, it generates the correct casting:

RDB$MSG_PORT_1_1.RDB$PORT_FIELD_1
:= PER_REC.BIRTHDAY ::RDML$CDDADT_TYPE;

♦

3.4.4 RDMLVAXC.H Is Now Compatible with C++

OpenVMS
VAX

OpenVMS
Alpha

In previous versions, when you compiled RDML applications with C++, you
received errors such as the following:

CXX-E_ARGCOUNT RDML$VC_INITIALIZE2 supply 8 arguments when 0 expected.

This problem has been corrected in V7.0. ♦

Software Errors Fixed 3–79

4
Documentation Additions and Changes

This chapter provides descriptions of late-breaking product enhancements and
changes and corrections for documentation errors and omissions.

4.1 Latest Software Enhancements
This section describes software enhancements that were implemented after the
Oracle Rdb Version 7.0 documentation entered final production.

4.2 Additions and Changes to the Oracle Rdb Documentation for
Version 7.0 and Earlier

This section provides information about late-breaking changes or other
information that was missing or changed in the Oracle Rdb documentation
for Version 7.0 and earlier releases.

4.2.1 Additions and Changes to the Oracle Rdb7 and Oracle CODASYL DBMS:
Guide to Hot Standby Databases Documentation

OpenVMS
VAX

OpenVMS
Alpha

The Hot Standby software has been enhanced regarding how it handles after-
image journal files. Section 4.2.4 in the Oracle Rdb7 and Oracle CODASYL
DBMS: Guide to Hot Standby Databases states the following information:

If an after-image journal switchover operation is suspended when replication
operations are occurring, you must back up one or more of the modified after-
image journals to add a new journal file.

This restriction has been removed. Now, you can add journal files or use the
emergency AIJ feature of Oracle Rdb Release 7.0 to automatically add a new
journal file. Note the following when adding an AIJ file versus adding an
emergency AIJ file:

• You can add an AIJ file to the master database and it will be replicated on the
standby database. If replication operations are active, the AIJ file is created
on the standby database right away. If replication operations are not active,
the AIJ file is created on the standby database when replication operations
are restarted.

• Emergency AIJ files can be added anytime. If replication operations are
active, the emergency AIJ file is created on the standby database right away.
However, because emergency AIJ files are not journaled, starting replication
after you create an emergency AIJ will fail. You cannot start replication
operations because the Hot Standby software detects a mismatch in the
number of after-image journal files on the master compared to the standby
database.

Documentation Additions and Changes 4–1

If an emergency AIJ file is created on the master database when replication
operations are not active, you must perform a master database backup
and then restore the backup on the standby database. Otherwise, an
AIJSIGNATURE error will result.

4.3 Oracle Rdb7 SQL Reference Manual
This section provides information that is missing from or changed in V7.0 of the
Oracle Rdb7 SQL Reference Manual.

4.3.0.1 Reorganization of the Oracle Rdb7 SQL Reference Manual
Due to a page count restriction for hardcopy documentation, the Oracle Rdb7
SQL Reference Manual has been reorganized. Volume 2 now includes the ALTER
DATABASE Statement through the DECLARE Variable Statement. Volume 3
now includes the DELETE Statement through the WHENEVER Statement.

4.3.1 Incorrect Qualifier for SQL Module Language Documented
The OpenVMS LC_PROC_NAMES qualifier for the SQL module language should
be LOWERCASE_PROCEDURE_NAMES. This error has been fixed in the V7.0
Oracle Rdb7 SQL Reference Manual.

This error also appears in the Migrating Oracle Rdb7 Databases and Applications
to Digital UNIX. This manual will be fixed in a future release.

4.3.2 Incorrect Digital UNIX Link Command for SQL Precompiler Documented
The section titled SQL Precompiler Command Line for Digital UNIX in the SQL
Precompiler chapter of the Oracle Rdb7 SQL Reference Manual shows several
examples incorrectly using the -lsql link command.

The correct link command is -lrdbsql for Oracle Rdb. See Section 3.2.1 for more
information about this change.

This error will be corrected in the next published version of the Oracle Rdb7 SQL
Reference Manual.

4.4 Oracle RMU Reference Manual
This section provides information that is missing from the 7.0 of the Oracle RMU
Reference Manual.

4.4.1 New Transaction_Mode Qualifier for Some Oracle RMU Commands
A new qualifier, Transaction_Mode, has been added to the RMU Copy, Move_Area,
Restore, and Restore Only_Root commands. You can use this qualifier to set the
allowable transaction modes for the database root file created by these commands.
If you are not creating a root file as part of one of these commands, for example,
you are restoring an area, attempting to use this qualifier returns a CONFLSWIT
error. This qualifier is similar to the SET TRANSACTION MODE clause of the
CREATE DATABASE command in interactive SQL.

The primary use of this qualifier is when you restore a backup file (of the master
database) to create a Hot Standby database. Include the Transaction_Mode
qualifier on the RMU Restore command when you create the standby database
(prior to starting replication operations). Because only read-only transactions are
allowed on the standby database, you should use the Transaction_Mode=Read_
Only qualifier setting. This setting prevents modifications to the standby
database at all times, even when replication operations are not active.

4–2 Documentation Additions and Changes

You can specify the following transaction modes for the Transaction_Mode
qualifier:

All
Current
None
[No]Batch_Update
[No]Read_Only
[No]Exclusive
[No]Exclusive_Read
[No]Exclusive_Write
[No]Protected
[No]Protected_Read
[No]Protected_Write
[No]Shared
[No]Shared_Read
[No]Shared_Write

Note that [No] indicates that the value can be negated. For example, the
NoExclusive_Write option indicates that exclusive write is not an allowable access
mode for this database. If you specify the Shared, Exclusive, or Protected option,
Oracle RMU assumes you are referring to both reading and writing in these
modes. For example, the Transaction_Mode=Shared option indicates that you
want both Shared_Read and Shared_Write as transaction modes. No mode is
enabled unless you add that mode to the list or you use the ALL option to enable
all modes.

You cannot negate the following three options: All, which enables all transaction
modes; None, which disables all transaction modes; and Current, which enables
all transaction modes that are set for the source database. If you do not specify
the Transaction_Mode qualifier, Oracle RMU uses the transaction modes enabled
for the source database.

You can list one qualifier that enables or disables a particular mode followed
by another that does the opposite. For example, Transaction_Mode=(NoShared_
Write, Shared) is ambiguous because the first value disables Shared_Write access
while the second value enables Shared_Write access. Oracle RMU resolves the
ambiguities by first enabling all modes that are enabled by the items in the
Transaction_Mode list and then disabling those modes that are disabled by items
in the Transaction_Mode list. The order of items in the list is irrelevant. In the
example discussed, Shared_Read is enabled and Shared_Write is disabled.

The following example shows how to set a newly restored database to allow read-
only transactions only. After Oracle RMU executes the command, the database is
ready for you to start Hot Standby replication operations.

$ RMU /RESTORE /TRANSACTION_MODE=READ_ONLY MF_PERSONNEL.RBF

4.4.2 RMU Server After_Journal Stop Command
If database replication is active and you attempt to stop the database AIJ Log
Server, Oracle Rdb returns an error. You must stop database replication before
attempting to stop the server.

In addition, a new qualifier, Output=filename, has been added to the RMU Server
After_Journal Stop command. This optional qualifier allows you to specify the
file where the operational log is to be created. The operational log records the
transmission and receipt of network messages.

Documentation Additions and Changes 4–3

If you do not include a directory specification with the file name, the log file is
created in the database root file directory. It is invalid to include a node name as
part of the file name specification.

Note that all Hot Standby bugcheck dumps are written to the corresponding
bugcheck dump file; bugcheck dumps are not written to the file you specify with
the Output qualifier.

4.4.3 Incomplete Description of Protection Qualifier for RMU Backup
After_Journal Command

Digital UNIX The description of the Protection Qualifier for the RMU Backup After_Journal
command is incomplete in the Oracle RMU Reference Manaul for Digital UNIX.
The complete description is as follows:

The Protection qualifier specifies the system file protection for the backup file
produced by the RMU Backup After_Journal command. If you do not specify the
Protection qualifier, the default access permissions are -rw-r----- for backups to
disk or tape.

Tapes do not allow delete or execute access and the superuser account always
has both read and write access to tapes. In addition, a more restrictive class
accumulates the access rights of the less restrictive classes.

If you specify the Protection qualifier explicitly, the differences in access
permissions applied for backups to tape or disk as noted in the preceding
paragraph are applied. Thus, if you specify Protection=(S,O,G:W,W:R), the access
permissions on tape becomes rw-rw-r--. ♦

4.5 Changes to the Oracle Rdb7 Guide to Database Performance
and Tuning

The following section provides corrected, clarified, or omitted information for the
Oracle Rdb7 Guide to Database Performance and Tuning manual.

4.5.1 Error in Updating and Retrieving a Row by Dbkey Example
Example 3-22 in Section 3.8.3 that shows how to update and retrieve a row by
dbkey is incorrect. The example show appear as follows:

4–4 Documentation Additions and Changes

SQL> ATTACH ’FILENAME MF_PERSONNEL.RDB’;
SQL> --
SQL> -- Declare host variables
SQL> --
SQL> DECLARE :hv_row INTEGER; -- Row counter
SQL> DECLARE :hv_employee_id ID_DOM; -- EMPLOYEE_ID field
SQL> DECLARE :hv_employee_id_ind SMALLINT; -- Null indicator variable
SQL> --
SQL> DECLARE :hv_dbkey CHAR(8); -- DBKEY storage
SQL> DECLARE :hv_dbkey_ind SMALLINT; -- Null indicator variable
SQL> --
SQL> DECLARE :hv_last_name LAST_NAME_DOM;
SQL> DECLARE :hv_new_address_data_1 ADDRESS_DATA_1_DOM;
SQL> --
SQL> -- Set host variables
SQL> --
SQL> SET TRANSACTION READ WRITE;
SQL> BEGIN
cont> --
cont> -- Set the search value for SELECT
cont> --
cont> SET :hv_last_name = ’Ames’;
cont> --
cont> -- Set the NEW_ADDRESS_DATA_1 value
cont> --
cont> SET :hv_new_address_data_1 = ’100 Broadway Ave.’;
cont> END;
SQL> COMMIT;
SQL> --
SQL> SET TRANSACTION READ ONLY;
SQL> BEGIN
cont> SELECT E.EMPLOYEE_ID, E.DBKEY
cont> INTO :hv_employee_id INDICATOR :hv_employee_id_ind,
cont> :hv_dbkey INDICATOR :hv_dbkey_ind
cont> FROM EMPLOYEES E
cont> WHERE E.LAST_NAME = :hv_last_name
cont> LIMIT TO 1 ROW;
cont> --
cont> GET DIAGNOSTICS :hv_row = ROW_COUNT;
cont> END;
SQL> COMMIT;
SQL> --
SQL> SET TRANSACTION READ WRITE RESERVING EMPLOYEES FOR SHARED WRITE;
SQL> BEGIN
cont> IF (:hv_row = 1) THEN
cont> BEGIN
cont> UPDATE EMPLOYEES E
cont> SET E.ADDRESS_DATA_1 = :hv_new_address_data_1
cont> WHERE E.DBKEY = :hv_dbkey;
cont> END;
cont> END IF;
cont> END;
SQL> COMMIT;
SQL> --
SQL> -- Display result of change
SQL> --
SQL> SET TRANSACTION READ ONLY;
SQL> SELECT E.*
cont> FROM EMPLOYEES E
cont> WHERE E.DBKEY = :hv_dbkey;
EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
ADDRESS_DATA_1 ADDRESS_DATA_2 CITY

STATE POSTAL_CODE SEX BIRTHDAY STATUS_CODE
00416 Ames Louie A
100 Broadway Ave. Alton

Documentation Additions and Changes 4–5

NH 03809 M 13-Apr-1941 1

1 row selected
SQL>

The new example will appear in a future publication of the Oracle Rdb7 Guide to
Database Performance and Tuning manual.

4.5.2 Error in Calculation of Sorted Index in Example 3-46
Example 3-46 in Section 3.9.5.1 shows the output when you use the RMU
Analyze Indexes command and specify the Option=Debug qualifier and the
DEPARTMENTS_INDEX sorted index.

The description of the example did not include the 8 byte dbkey in the calculation
of the sorted index. The complete description is as follows:

The entire index (26 records) is located on pages 2 and 3 in logical area 72 and
uses 188 bytes of a possible 430 bytes or the node record is 47 percent full. Note
that due to index compression, the node size has decreased in size from 422 bytes
to 188 bytes and the percent fullness of the node records has dropped from 98 to
47 percent. Also note that the used/avail value in the summary information at
the end of the output does not include the index header and trailer information,
which accounts for 32 bytes. This value is shown for each node record in the
detailed part of the output. The number of bytes used by the index is calculated
as follows: the sort key is 4 bytes plus a null byte for a total of 5 bytes. The
prefix is 1 byte and the suffix is 1 byte. The prefix indicates the number of bytes
in the preceding key that are the same and the suffix indicates the number of
bytes that are different from the preceding key. The dbkey pointer to the row is 8
bytes. There are 26 data rows multiplied by 15 bytes for a total of 390 bytes. The
15 bytes include:

• 7 bytes for the sort key: length + null byte + prefix + suffix

• 8 bytes for the dbkey pointer to the row

Add 32 bytes for index header and trailer information for the index node to the
390 bytes for a total of 422 bytes used. Index compression reduces the number of
bytes used to 188 bytes used.

The revised description will appear in a future publication of the Oracle Rdb7
Guide to Database Performance and Tuning manual.

4–6 Documentation Additions and Changes

Index

A
Access control list

See ACL
ACL

default, 2–27
granting Oracle RMU privileges, 2–27

Active User Chart, 1–47
Adjustable lock granularity

fanout, 1–27
After-image journal (.aij) file, 3–1, 3–4, 3–68, 3–78

backing up, 1–34, 3–63, 3–68
deadlock, 3–4
Format=New_Tape qualifier, 3–67
locking, 3–3
process global symbols, 3–76
RMU Convert command and, 3–61
settings, 2–9
size of, 3–69
switchover, 3–3

After-image journal files
replicating to the Hot Standby database, 4–1

Aggregate function
COALESCE keyword and, 3–52

AIJ Backup Server (ABS), 3–70
AIJ cache file, on electronic disk, 3–4
.aij file

See After-image journal (.aij) file
AIJ Growth Trend screen, 1–47
AIJ Log Server (ALS), 3–3, 3–4

log file, 4–3
Performance Monitor screen, 1–47
stopping, 4–3

AIJ log shipping
See Hot Standby database

AIJ switchover, 3–1
Alias

initializing handle, 3–38
ALLOCATION IS clause

ALTER STORAGE AREA clause, 1–26
ALS

See AIJ Log Server (ALS)
ALTER DATABASE statement

ADJUSTABLE LOCK GRANULARITY clause,
1–27

ALTER STORAGE AREA clause

ALTER DATABASE statement
ALTER STORAGE AREA clause (cont’d)

ALLOCATION IS clause, 1–26
BUFFER SIZE clause, 1–26
DICTIONARY IS NOT USED clause, 1–27
DROP STORAGE AREA clause, 1–25
EDIT STRING clause, 1–27
EXTENT clause, 3–40
METADATA CHANGES ARE DISABLED

clause, 1–26
NUMBER OF CLUSTER NODES IS clause,

3–4
RECOVERY JOURNAL clause, 1–27
row-level cache, 1–9
transaction mode, 1–31
WAIT clause, 1–26

ALTER DOMAIN statement
constraints and, 3–55
views and, 3–32

ALTER INDEX statement, 3–57
ALTER STORAGE AREA clause, 3–40

ALLOCATION IS clause, 1–26
RDB$SYSTEM, 1–25

ALTER STORAGE MAP statement, 3–57
USING clause, 3–37
vertical partition, 2–9

ALTER TABLE statement, 3–54, 3–55
constraints and, 3–55
DROP COLUMN clause, 3–54
views and, 3–32

ANSI-style privilege, 3–46
Area

See Storage area
Argument count checking

in SQL, 2–5
Array of records

processing with SQL Pascal precompiler, 2–23
AST disabled, 3–12
Attach

database, 3–19

B
Backup operation

after-image journal, 3–63, 3–67

Index–1

Backward scan, 3–19
Basic predicate

inequality operators, 1–30
BIGINT data type

precision, 3–22
B-tree index

ranked, 1–7
Buffer

system space, 1–9
Buffer size

modifying, 1–26
Bugcheck

commit and, 3–8
CREATE VIEW and, 3–39
fixed, 3–14, 3–72

RDMS$$EXE_CREATE_TTBL_FILE+5D,
3–21

Hot Standby, 4–3
PIO$MARK_SNUB, 3–7
PIOFETCH$WITHIN_DB, 3–7

BUG database
See Problem reporting

Built-in function, 1–31
BYTE VARYING data type, 3–54

C
Cache

row-level, 1–9
CALL statement, 1–29
CANTSNAP error, 3–50
Cardinality

64-bit, 1–10
index, 3–19
index prefix, 1–10, 1–14
system table, 3–19
update algorithm, 1–14

CASCADE keyword
DROP STORAGE AREA clause, 2–9

CASE expression, 3–42, 3–56
CAST function, 3–23
CDD/Repository

DEC MMS and, 3–26
multischema database and, 2–27
restrictions, 2–25 to 2–30

CDDSHR image
upgrading, 2–28

Character set
converting to, 1–31

CHECK constraint, 3–48, 3–49
Checkpoint Information screen, 1–50
Checkpoint operation

global, 3–16
Checksum error, 3–14
Checksum_Verification qualifier, 2–18

C language
SQL precompiler inconsistent regarding

symbolic debugging, 3–39
Closing database, 1–26
COALESCE keyword, 3–52
COBOL language

SQL precompiler inconsistent regarding
symbolic debugging, 3–39

Command line recall, 3–42
COMMIT statement, 3–60
Commit-to-journal option, 3–6
Communications protocol

PC clients and, 1–4
Compatibility with repository, 2–25
Composition of average rate statistic values

determining, 1–49
Compound statement, 3–35

aggregation subquery, 2–15
FOR statement, 2–14, 3–51
SET statement, 2–14
status parameter value, 3–35
stored routine and, 2–13

Compression, 3–11
duplicate, 1–7

COMPUTED BY column, 3–28, 3–31
DROP TABLE statement and, 3–30

Concatenation, 1–31
CONCAT function, 1–31
Configuration file

.dbsrc, 3–15
RDB$CLIENT_DEFAULTS.DAT, 3–15
.sqlrc, 3–72

Configuration parameter
RDB_BIND_AIJ_ARB_COUNT, 3–2
RDB_BIND_AIJ_EMERGENCY_DIR, 3–2
RDB_BIND_AIJ_WORK_FILE, 1–32
RDB_BIND_ALS_CREATE_AIJ, 3–1
RDB_BIND_BUFFERS, 2–12
RDB_BIND_CARD_UPDATE_QUOTA, 1–14
RDB_BIND_DBR_WORK_FILE, 1–32
RDB_BIND_HOLD_CURSOR_SNAP, 2–17
RDB_BIND_PRESTART_TXN, 1–8
RDB_BIND_QG_REC_LIMIT, 2–10
RDB_BIND_RUJ_ALLOC_BLKCNT, 1–8
RDB_BIND_SEGMENTED_STRING_COUNT,

3–25
RDB_BIND_STATS_DISABLED, 3–67
RDB_TTB_HASH_SIZE, 1–27
RDB_USE_OLD_COUNT_RELATION, 1–12
SQL_ALTERNATE_SERVICE_NAME, 1–11
SQL_XA_TRACE, 1–23

Connection
name, 3–40
SQL module language and, 3–57

CONSTANT clause
DECLARE variable statement, 1–29

Index–2

Constraint
adding a new column, 3–48
CHECK, 3–49
evaluating, 3–21, 3–48

RMU Load command and, 1–37
multischema database and, 3–43
RMU Verify command and, 1–40
UNIQUE, 3–46

CONVERT function, 1–31
Converting database, 2–3

single-file, 2–3
Converting dictionary databases, 2–29
Converting text data to BIGINT data, 3–22
COUNT function, 1–31
Crc qualifier, 2–18
CREATE DATABASE statement

DEFAULT STORAGE AREA clause, 1–25
METADATA CHANGES ARE DISABLED

clause, 1–26
OPEN IS clause, 1–26
RECOVERY JOURNAL clause, 1–27
row-level cache, 1–9
transaction mode, 1–31

CREATE INDEX statement, 2–11, 3–12, 3–57
optimization, 1–8, 1–12

CREATE MODULE statement, 1–28, 3–34
CREATE OUTLINE statement

FROM clause, 1–26
ON FUNCTION clause, 1–26

CREATE STORAGE MAP statement, 1–24, 3–57
restriction lifted, 3–40
table with data, 1–26

CREATE TABLE statement
temporary table, 1–27

CREATE TRIGGER statement, 3–34
CREATE VIEW statement, 3–39
CSN values, 1–8
CURRENT_DATE function, 3–28
CURRENT_TIME function, 3–28
CURRENT_TIMESTAMP function, 1–31, 3–28
CURRENT_USER function, 1–30
Cursor

holdable, 1–28, 2–17
C_PROTOTYPES command line qualifier

SQL module processor, 1–30

D
Database

hang, 3–12
Hot Standby, 1–6
remote, 3–15
support for multifile databases, 2–20
support for single-file databases, 2–20

Database Dashboard screen
Performance Monitor, 1–44

Database Parameter Information submenu, 1–49
Database recovery (DBR) process, 3–6, 3–7, 3–76

bugcheck fixed, 3–68, 3–75
fast commit and, 3–5

Database statistics
displaying, 1–47
new features, 1–43
RMU Show Statistics command, 1–47

Data definition
freezing, 1–26

DATA DEFINITION clause
SET TRANSACTION statement, 2–11, 2–13

Data dictionary
See CDD/Repository, Repository

Data Distributor
See Replication Option

Data matches
found with RDO MATCHING, 3–79

Data type
BIGINT, 3–22
BYTE VARYING, 3–54
DATE, 3–36
for Pascal language, 1–30
LIST OF BYTE VARYING, 1–56
modifying

constraints and, 3–55
TIMESTAMP, 3–22, 3–36
VARBYTE, 3–54

DATE data type, 3–36
Date-time data type, 3–22
DBAPack program group, 1–4, 1–5

launching from Oracle Enterprise Manager,
1–6

DBKEY Information screen, 1–47
DBKEY keyword, 1–31
Dbkey logging

Performance Monitor, 1–43
DBKEY SCOPE clause

of ATTACH statement, 3–76
.dbsrc configuration file, 3–15
Deadlock, 3–4, 3–16, 3–68

undetected, 3–16
DECdtm software, 2–20
DECLARE ALIAS statement, 3–38
DECLARE CURSOR statement

WITH HOLD clause, 1–28
DECLARE TRANSACTION statement

RESERVING clause, 3–37
DECLARE variable statement, 1–29
DECmigrate software, 2–3
DECnet/OSI, 2–21
DECODE function, 1–31
DEC OSF/1 operating system

See Digital UNIX
DEFAULT clause

adding a new column, 3–48
DECLARE variable statement, 1–29

Index–3

Default value
compound statement and, 1–29

DELETE statement, 3–36
Deleting table data, 1–27
Derived table

outer join and, 3–26
Detected asynchronous prefetch, 1–28
Device Information screen, 1–49
Devices

display locking statistics, 1–46
display of the storage area devices, 1–49

Dialect setting
ORACLE LEVEL1, 1–30

Digital UNIX
differences on, 2–4

Disconnect
failure of application, 3–14

DISCONNECT statement, 2–22
DISTINCT keyword

elimination of extra sorts, 1–10
Distributed transaction, 1–8, 2–20, 2–21, 3–78

on Digital UNIX, 1–15
Performance Monitor screen, 1–47

Division
by zero, 3–42

Documentation
online format, 1–58
ordering, 1–57
revisions, 4–1 to 4–6

Domain
CHECK constraint, 3–49

DROP MODULE statement
cascading delete, 1–29

DROP STORAGE AREA clause
CASCADE keyword, 1–25, 2–9

DROP TABLE statement
CASCADE keyword

computed by column and, 3–30
Dynamic OR optimization, 3–5
Dynamic SQL

statement name, 3–54
TRIM function and, 3–52

E
Editing

in interactive SQL, 1–30
Emergency AIJ files

restriction in replicated databases, 4–1
Encina software, 1–15
End-Of-Stream condition, 3–31
Environment variable, 3–72
Error message

for redundant column references, 3–56
RDB$_BAD_REQ_HANDLE, 3–14
SQL-I-UNMATEND, 2–23

Error reporting
See Problem reporting

Excessive root file I/O, 3–12
EXCESS_TRANS error, 3–13
Exclusive transaction, 3–50
EXPORT statement, 1–25

constraint definition, 3–43
file extension and, 3–45
outline and, 3–44
routines and, 3–46

Extensible .aij file, 3–68
EXTENT clause

ALTER DATABASE statement, 3–40
External function, 3–23
External procedure, 1–28

dropping, 1–29
External routine

enhancements, 1–28
EXTERNAL_GLOBALS qualifier

SQL command line, 3–38
-extern qualifier

SQL command line, 3–38

F
Fast commit option, 3–6, 3–16, 3–68

recovery and, 3–5
Fast incremental backup, 3–7
Features, new, 1–1 to 1–60
Fetching row

from remote database, 3–15
FETCH statement

NO_RECORD condition, 3–31
File IO Overview screen, 1–49

sorting, 1–50
FOR statement, 3–51

subquery, 2–14
FORTRAN language, 1–30
Function

See also Built-in function
built-in, 1–31
external, 1–28
stored, 1–28

G
GBLPAGES system parameter, 1–2
GET DIAGNOSTICS statement, 3–34, 3–35

CONNECTION_NAME clause, 1–29
Global buffer

IMPORT statement, 3–44
lock partitioning and, 3–8
STOP/ID and, 3–5
system space, 1–9

Global checkpoint operation, 3–16
GROUP BY clause, 3–42

elimination of extra sorts, 1–10

Index–4

G_FLOAT data type
precision, 3–22

H
Hashing

index-only, 1–9
Header file

sql_rdb_headers.h, 1–32
sql_sqlda.h, 1–32

Help
Hot Standby, 1–6
SQL, 3–42

Help files, 1–3
Holdable cursor, 2–17

stay open across transactions, 1–28
Horizontal partitioning, 1–24
Hot Record Information screen, 1–48
Hot Standby database

bugcheck, 4–3
replicating an Oracle Rdb database, 1–6

Hot Standby option, 2–1
workload collection and, 2–2

Hot Standby software
replicating after-image journal files, 4–1

HTML page
generating with Rdb Web Agent, 1–3

I
I/O channel limit, 3–22
IMPORT statement, 1–25

constraint definition, 3–43
DEFAULT STORAGE AREA clause, 1–25
fast commit and, 2–9
file extension and, 3–45
global buffers and, 3–44
journal setting and, 2–9
METADATA CHANGES ARE DISABLED

clause, 1–26
on Digital UNIX, 3–45
outline and, 3–44
routines and, 3–46
stored procedure and, 3–46

Include file
sql_rdb_headers.h, 1–32
sql_sqlda.h, 1–32

INCLUDE SQLCA statement
EXTERNAL keyword, 1–30

INCLUDE SQLDA2 statement, 2–23
Index

cardinality, 3–19
column references, 3–56
concurrent definition, 2–11, 2–13
duplicate compression, 1–7
duplicate detection, 1–7
index-only retrieval, 1–9
RMU Load command and, 1–37

Index (cont’d)
sorted ranked, 1–7
system metadata corruption, 3–13
unique, 3–9
values, 3–57

Index-only retrieval
hashed indexes, 1–9

Index optimization
empty table, 1–8

Index prefix cardinality, 1–10, 1–14
RMU Convert command and, 1–41

INITIALIZE_HANDLES qualifier
SQL command line, 3–38

Initializing handle
alias, 3–38

-init qualifier
SQL command line, 3–38

INSERT statement
memory leak, 3–11

Installation
CDDSHR image, 2–28
of previous version, 2–1
repository and, 2–28

Installation procedure, 1–1
GBLPAGES system parameter, 1–2

Interactive SQL
Ctrl/Z and, 3–42

Interval
in view, 3–52

INTOVF error, 3–22

J
Join

outer, 3–26
zigzag match, 1–10

Journaling
See also After-image journal (.aij) file
displaying recovery-unit journal, 1–47

Just_Corrupt qualifier
RMU Recover command, 1–41
RMU Restore command, 1–38, 1–41

Just_Page qualifier
RMU Recover command, 1–41
RMU Restore command, 1–38, 1–41

K
Keywords

now translate correctly, 3–77

L
LC_PROC_NAMES qualifier

SQL module processor, 4–2
–librdbsql shared object, 3–26

Index–5

–libsql shared object, 3–26
Licensing information, 1–2
LIKE clause

IGNORE CASE, 2–10
Linking

–libsql and, 3–26
List data

fetching from remote database, 3–15
LIST OF BYTE VARYING data type, 1–56
LMF information, 1–2
Locking

logical area, 3–12
row cache and, 2–7

Lock partitioning
global buffers and, 3–8

Lock Statistics submenu, 1–46
LOCK_CONFLICT error, 3–13
Logical name

RDM$BIND_AIJ_ARB_COUNT, 3–2
RDM$BIND_AIJ_EMERGENCY_DIR, 3–2
RDM$BIND_AIJ_WORK_FILE, 1–32
RDM$BIND_ALS_CREATE_AIJ, 3–1
RDM$BIND_BUFFERS, 2–12
RDM$BIND_DBR_WORK_FILE, 1–32
RDM$BIND_RUJ_ALLOC_BLKCNT, 1–8
RDMS$BIND_CARD_UPDATE_QUOTA, 1–14
RDMS$BIND_HOLD_CURSOR_SNAP, 2–17
RDMS$BIND_PRESTART_TXN, 1–8
RDMS$BIND_QG_REC_LIMIT, 2–10
RDMS$BIND_SEGMENTED_STRING_

COUNT, 3–25
RDMS$BIND_STATS_DISABLED, 3–67
RDMS$BIND_WORK_VM, 3–22
RDMS$TTB_HASH_SIZE, 1–27
RDMS$USE_OLD_COUNT_RELATION, 1–12

LOWERCASE_PROCEDURE_NAMES qualifier
SQL module processor, 4–2

–lrdbsql shared object, 3–26
SQL precompiler, 4–2

–lsql shared object, 3–26
SQL precompiler, 4–2

M
Memory, large, 1–9
Memory leak

INSERT statement and, 3–11
Merge

routines no longer called in incorrect order,
3–21

Messages
no longer returned during queries, 3–21

Message vector
remote database and, 3–15

Metadata
system, 1–50 to 1–56

METADATA CHANGES ARE DISABLED clause,
1–26

Missing value
table and, 3–11

Modifying RDB$SYSTEM storage area, 1–25
Monitor, 3–20

disabling, 3–73
hang, 3–15
message buffers, 1–40

Monitor Log screen, 1–47
Multifile database support, 2–20
Multischema database

CDD/Repository and, 2–27
importing, 3–43

Multistatement procedure, 3–60
FOR statement, 3–51

MULTITHREADED AREA ADDITIONS clause,
3–43

Multiversion access, 1–11

N
Network failure, 2–22
Network protocol

TCP/IP, 1–7, 1–11
Network support

PC clients and, 1–4
New features, 1–1 to 1–60

all interfaces, 1–7
new graphical user interface, 1–5, 1–6
Oracle RMU, 1–32 to 1–43
Performance Monitor, 1–43 to 1–50
SQL, 1–24 to 1–32

Node size
sorted index, 3–10

–noextend_source qualifier
SQL precompiler, 1–30

NOEXTERNAL_GLOBALS qualifier
SQL command line, 3–38

-noextern qualifier
SQL command line, 3–38

NOINITIALIZE_HANDLES qualifier
SQL command line, 3–38

-noinit qualifier
SQL command line, 3–38

NO_RECORD condition, 3–31
Null column, 3–18
Null value

constraints and, 3–49
RMU Load command and, 1–37
RMU Unload command and, 1–40

Index–6

O
OEM Configuration Utility, 1–6
OEM DBAPack, 1–4
Online Analysis facility, 1–46
Open file limit, 3–22
Opening database, 1–26
OPEN IS clause

CREATE DATABASE statement, 1–26
OpenVMS Alpha V7.0, 3–8
Operator notification, 2–4
Optimization

dynamic OR, 3–5
Optimizer statistics, 1–9
Oracle7 function, 1–31
Oracle Enterprise Manager (OEM)

configuration utility, 1–6
DBAPack, 1–4

ORACLE LEVEL1
dialect setting, 1–30

Oracle Rdb Windows client
Parallel Backup Monitor, 1–5
Performance Monitor, 1–5
Query Performance Tuner (QPT), 1–5
RMUwin, 1–5

Oracle RMU
commands pause during tape rewind, 2–24
data dictionary support, 2–6
new features, 1–32 to 1–43
on Digital UNIX, 2–5
OpenVMS Library Routine support, 2–6
operator notification, 2–6
privileges affected by repository, 2–27
restrictions, 2–18 to 2–19, 2–24
security auditing, 2–5
support for qualifiers on Digital UNIX, 2–5
symbol setting, 2–7
TA90 and TA92 tape drives, 2–24
tape support, 2–6
VMScluster support, 2–6

Oracle RMUwin
DECwindows Motif interface, 1–41
Motif support, 2–19
supported platforms, 1–5, 2–19

Oracle Trace
connections and, 3–9

ORDER BY clause
elimination of extra sorts, 1–10

Outer join, 3–26
Outline

IMPORT statement, 3–44

P
Page migration

Performance Monitor, 1–44
Pages checked statistics, 1–49
Page size

storage area, 2–8
PAGE TRANSFER VIA MEMORY clause, 3–7
Parallel backup, 1–33, 2–19
Parallel Backup Monitor, 1–5
Parallel load, 1–37
Parameter count checking

in SQL, 2–5
Partitioning

horizontal, 1–24
strict, 1–24, 2–7
vertical, 1–24

PARTITIONING NOT UPDATABLE clause, 2–7
Pascal language, 1–30

precompiler, 2–23
supported data types, 1–30

Pausing screen
Performance Monitor, 1–45

PC client, 1–4
supported networks, 1–4
supported platforms, 1–4

2PC Statistics screen, 1–47
Performance enhancement

eliminating sort, 1–10
Query Performance Tuner (QPT), 1–5
storage map and, 3–10
system space global buffer, 1–9
zigzag match join, 1–10

Performance Monitor, 3–72, 3–73
Active User Chart, 1–47
AIJ Growth Trend screen, 1–47
ALS Statistics screen, 1–47
Cycle qualifier, 1–44
DBKEY Information screen, 1–47
dbkey logging, 1–43
device information screen, 1–49
distributed transaction, 1–47
elapsed days, displaying, 1–46
File IO Overview screen, 1–49
formatted binary file, 1–47
Hot Record Information screen, 1–48
Input qualifier, 1–46, 1–47
locking statistics displays, 1–46
migrating through screens, 1–44
Motif support, 2–19
new features, 1–43 to 1–50
NoCycle qualifier, 1–44
Online Analysis facility, 1–46
OpenVMS SYSGEN parameter screen, 1–48
Output qualifier, 1–46, 1–47
page migration, 1–44
parameter settings, displaying, 1–49

Index–7

Performance Monitor (cont’d)
pausing screen, 1–45
RCS Statistics screen, 1–48
Recovery Statistics screen, 1–46
Reopen_Interval qualifier, 1–43
Row Cache Length screen, 1–48
Row Cache Queue Length screen, 1–48
Row Cache Status screen, 1–48
Row Cache Utilization screen, 1–48
Scatter Plot screen, 1–49
screen access keystrokes, 1–46
search mode, 1–44
Stall Messages screen, filter option, 1–49
Summary Cache Statistics screen, 1–48
supported platforms, 1–5, 2–19
switching databases, 1–45
Two-Phase Commit (2PC) Statistics screen,

1–47
zoom screen, 1–45

PIO$MARK_SNUB bugcheck, 3–7
PL/I language

support for SQLDA2, 2–23
Plan file

RMU Load Plan command and, 1–38
Precompiling SQL applications

effect on C and COBOL symbolic debug tables,
3–39

PREPARE statement, 3–54
Privilege

required for dictionary access, 2–27
showing Oracle RMU privileges, 2–27

Problem reporting, 1–2
Procedure

external, 1–28
Process

hung, 3–12
Process global symbol

created and deleted for AIJ, 3–76
RDM$AIJ_ENDOFFILE, 3–69
RDM$AIJ_FULLNESS, 3–69

Process termination
global buffer and, 3–5

Psect
RDB$MESSAGE_VECTOR, 3–50

Q
QUADWORD

See BIGINT data type
Query

compiling, 3–21
limiting, 2–10

Query header, 3–53
Query Performance Tuner (QPT), 1–5
Quiet-point backup, 3–68

R
Ranked sorted index, 1–7
RCS

See Record Cache Server (RCS)
RCS Statistics screen, 1–48
RDB$CLIENT_DEFAULTS.DAT configuration file,

3–15
RDB$MESSAGE_VECTOR psect, 3–50
RDB$SYSTEM storage area, 3–40

modifying, 1–25
RDB$_BAD_REQ_HANDLE error, 3–14
Rdbalter Area . . . Page command, 1–32
Rdb Client kit, 1–4
RDB-E-BAD_DPB_CONTENT error, 3–43
RDB-E-UNRES_REL error, 3–33
RDBPRE preprocessor, 3–79
Rdb Web Agent, 1–3
RDB_AIJ_ARB_COUNT configuration parameter,

3–2
RDB_BIND_AIJ_EMERGENCY_DIR configuration

parameter, 3–2
RDB_BIND_AIJ_WORK_FILE configuration

parameter, 1–32
RDB_BIND_ALS_CREATE_AIJ configuration

parameter, 3–1
RDB_BIND_BUFFERS configuration parameter,

2–12
RDB_BIND_CARD_UPDATE_QUOTA

configuration parameter, 1–14
RDB_BIND_DBR_WORK_FILE configuration

parameter, 1–32
RDB_BIND_HOLD_CURSOR_SNAP configuration

parameter, 2–17
RDB_BIND_PRESTART_TXN configuration

parameter, 1–8
RDB_BIND_QG_REC_LIMIT configuration

parameter, 2–10
RDB_BIND_RUJ_ALLOC_BLKCNT configuration

parameter, 1–8
RDB_BIND_SEGMENTED_STRING_COUNT

configuration parameter, 3–25
RDB_BIND_STATS_DISABLED configuration

parameter, 3–67
RDB_TTB_HASH_SIZE configuration parameter,

1–27
RDB_USE_OLD_COUNT_RELATION

configuration parameter, 1–12
RDM$AIJ_ENDOFFILE symbol, 3–69
RDM$AIJ_FULLNESS symbol, 3–69
RDM$BIND_AIJ_ARB_COUNT logical name, 3–2
RDM$BIND_AIJ_EMERGENCY_DIR logical

name, 3–2
RDM$BIND_AIJ_WORK_FILE logical name,

1–32

Index–8

RDM$BIND_ALS_CREATE_AIJ logical name,
3–1

RDM$BIND_BUFFERS logical name, 2–12
RDM$BIND_DBR_WORK_FILE logical name,

1–32
RDM$BIND_RUJ_ALLOC_BLKCNT logical name,

1–8
RDML interface

C++ language, 3–79
known problems, 2–24
Pascal and, 2–24, 3–79
restrictions, 2–24 to 2–25

RDMLRTL.OLB file, 2–25
RDMS$$EXE_CREATE_TTBL_FILE+5D bugcheck

fixed, 3–21
RDMS$BIND_CARD_UPDATE_QUOTA logical

name, 1–14
RDMS$BIND_HOLD_CURSOR_SNAP logical

name, 2–17
RDMS$BIND_PRESTART_TXN logical name, 1–8
RDMS$BIND_QG_REC_LIMIT logical name,

2–10
RDMS$BIND_SEGMENTED_STRING_COUNT

logical name, 3–25
RDMS$BIND_STATS_DISABLED logical name,

3–67
RDMS$BIND_WORK_VM logical name

now allows large values, 3–22
RDMS$TTB_HASH_SIZE logical name, 1–27
RDMS$USE_OLD_COUNT_RELATION

logical name, 1–12
RDMS-E-DUPLANAME error, 3–43
RDO interface

MATCHING operator now finds data matches,
3–79

Read-only transaction, 3–16
Record Cache Server (RCS), 2–7
Record-level cache

See Row-level cache
Recovery, 3–6, 3–7, 3–70
Recovery Statistics screen, 1–46
Recovery-unit journal (.ruj) file, 1–47

location of, 1–27
Remote database, 3–15
Replicate command, 1–6
Replication database, 1–6
Replication Option, 2–22
Repository

See also CDD/Repository
affecting Oracle RMU privileges, 2–27
compatibility with Oracle Rdb, 2–25
on same system as Oracle Rdb for OpenVMS

VAX, 2–28
removing link, 1–27
restrictions, 2–25 to 2–30
support for Oracle Rdb features, 2–25

RESERVE STORAGE AREAS clause, 3–43
RESERVING clause

ALTER INDEX and, 3–33
for transaction

view and, 3–37
Restrictions

all interfaces, 2–1 to 2–8, 2–20 to 2–22
RDML, 2–24 to 2–25
repository, 2–25 to 2–30
RMU, 2–18 to 2–19, 2–24
SQL interface, 2–8 to 2–17, 2–23 to 2–24

RETURNED_SQLCODE value, 3–35
RETURNED_SQLSTATE value, 3–35
RMS-F-EOF error, 3–42
RMU

See Oracle RMU, specific RMU command
RMU Alter Area . . . Page command, 1–32
RMU Analyze Cardinality command, 1–33

Update qualifier, 3–74
RMU Analyze command, 3–74
RMU Analyze Index command, 1–33
RMU Analyze Placement command, 1–33
RMU Backup After_Journal command, 1–34,

3–67, 3–68, 3–69
Accept_Label qualifier, 1–34
tape labeling, 1–34

RMU Backup command, 1–33, 2–20, 3–68
Accept_Label qualifier, 1–34
Checksum_Verification qualifier, 2–18
Crc qualifier, 2–18
multiprocess, 1–33
parallel, 1–33, 2–19
plan file, 1–33
tape labeling, 1–34

RMU Backup Plan command
plan file, 1–34

RMU Checkpoint command, 1–34, 3–16
NoWait qualifier, 3–75
Wait qualifier, 3–75

RMU Collect Optimizer_Statistics command,
1–33, 1–35, 2–19

RMU Convert command, 1–35, 2–3
fixed-size AIJ and, 3–61
index prefix cardinality, 1–41
multisegment sorted index cardinality update,

1–35
versions supported, 1–35

RMU Copy command
Transaction_Mode qualifier, 1–35, 4–2

RMU Delete Optimizer_Statistics command, 1–35
RMU Dump After_Journal command

Option qualifier, 1–36
RMU Dump Backup command, 1–36
RMU Dump command, 1–35
RMU Dump Header command, 3–71
RMU Extract command

external procedure, 1–36
Item=Security qualifier, 3–77

Index–9

RMU Extract command (cont’d)
Option qualifier, 3–77

RMU Insert Optimizer_Statistics command, 1–35
RMU Load command, 1–36

constraint evaluation, 1–37
deferring index updates, 1–37
null value, 1–37
parallel operation, 1–37
plan file, 1–37
Row_Count qualifier, 1–37
security audit records, 1–37
.unl file

and Oracle Rdb version, 1–37
version of .unl file, 1–37

RMU Load Plan command
plan file, 1–38

RMU Monitor command, 3–73
RMU Move_Area command

Transaction_Mode qualifier, 1–38, 4–2
RMU Open command

Global_Buffers qualifier, 3–61
RMU Optimize After_Journal command

Accept_Label qualifier, 1–38
tape labeling, 1–38

RMU Recover command, 1–38, 1–41
RMU Recover Resolve command, 3–78
RMU Repair command, 3–73

Checksum qualifier, 1–38
Initialize=Snapshot qualifier, 3–73

RMU Replicate command, 1–6, 2–1
RMU Restore command, 1–38, 1–41, 3–62, 3–73

Just_Pages qualifier, 3–61
options file, 1–33, 1–35, 1–36
Transaction_Mode qualifier, 1–38, 4–2

RMU Restore Only_Root command, 1–38
Transaction_Mode qualifier, 1–38, 4–2

RMU Server After_Journal Reopen_Output
command, 1–39

RMU Server After_Journal Start command
Output qualifier, 1–39

RMU Server After_Journal Stop Command
Output qualifier, 4–3

RMU Server Backup_Journal Resume command,
1–39

RMU Server Backup_Journal Suspend command,
1–39

RMU Set After_Journal command, 1–39
RMU Set Audit command, 3–71
RMU Set Corrupt_Pages command, 3–73

specifying snapshot files with, 1–39
RMU Set Privilege command, 2–27
RMU Show After_Journal command, 1–39

Backup_Context qualifier, 3–69
process global symbols, 3–76

RMU Show Optimizer_Statistics command, 1–35
RMU Show Privilege command, 2–27

RMU Show Statistics command, 1–40
See also Performance Monitor
Cycle qualifier, 1–44
Dbkey_Log qualifier, 1–43
Input=file qualifier, 3–72
Reopen_Interval qualifier, 1–43
Stall_Log qualifier, 1–43

RMU Show System command
monitor message buffers, 1–40

RMU Show Users command
monitor message buffers, 1–40
no longer causes monitor bugchecks, 3–76

RMU Unload command, 3–74
null value, 1–40

RMU Verify command, 1–40
Constraints qualifier, 3–72

RMUwin
See Oracle RMUwin

RMU Windows Statistics command, 1–41
ROLLBACK statement, 3–60
Rollforward, 3–70
Routine

external, 1–28
SQL

header file for, 1–32
stored, 1–28

Routine verification
RMU Verify command and, 1–40

Row cache
See also Row-level cache

Row Cache Length screen, 1–48
Row Cache Queue Length screen, 1–48
Row Cache Status screen, 1–48
Row Cache Utilization screen, 1–48
ROWID keyword, 1–31
Row Length screen, 1–48
Row-level cache, 1–9, 2–7

See also Row cache
Hot Record Information screen, 1–48
Summary Cache Statistics screen, 1–48

.RUJ
See Recovery-unit journal (.ruj) file

RUJ Statistics screen, 1–47

S
Scatter Plot screen

Performance Monitor, 1–49
Searched delete, 3–36
Searched update, 3–36
Search value, 1–31
SEGTOOBIG error, 3–34
SELECT statement, 3–35

DISTINCT keyword, 3–42
LIKE clause, 3–53
view and, 3–41

Index–10

Service
network, 1–11

SET DATE FORMAT statement
disabled on Digital UNIX, 2–5

SET DICTIONARY statement
disabled on Digital UNIX, 2–5

SET FLAGS statement, 1–28
SET LANGUAGE statement

disabled on Digital UNIX, 2–5
SET QUERY LIMIT statement, 2–10
SET statement

in FOR statement, 2–14
SET TRANSACTION statement

RESERVING clause, 3–37
SGA API, 1–7
SHARED DATA DEFINITION clause

SET TRANSACTION statement, 2–11, 2–13
Shift_JIS character set, 1–31
SHOW DATE FORMAT statement

disabled on Digital UNIX, 2–5
SHOW DICTIONARY statement

disabled on Digital UNIX, 2–5
SHOW FLAGS statement, 1–28
SHOW LANGUAGE statement

disabled on Digital UNIX, 2–5
SHOW statement, 1–31
SHOW STORAGE MAP statement, 2–9
SHOW TRANSACTION statement, 3–54
SIGNAL statement

in a compound statement, 1–29
Single-file database

converting, 2–3
support, 2–20

Singleton select
eliminating sort in, 1–12

Snapshot (.snp) file, 3–22
deferred, 3–16
locking information, displaying, 1–46
specifying with RMU Set Corrupt_Pages

command, 1–39
Snapshot page, 3–73
Software Problem Report (SPR)

See Problem reporting
Sort

eliminating redundant sort, 1–12
elimination of extra, 1–10
routines no longer called in incorrect order,

3–21
Sorted index

node size, 3–10
ranked, 1–7

Space area management (SPAM) page, 3–25
SPR

See Problem reporting
SQL$$SET_TERM_CHARS, 3–53

SQL$CLOSE_CURSORS routine, 3–60
SQL applications, 1–57
SQLCA status parameter

including in C program, 1–30
SQLDA

header file for, 1–32
SQLDA2

header file for, 1–32
support in PL/I precompiler, 2–23

SQL function, 1–31
SQL Help

Ctrl/Z and, 3–42
SQL interface

adding a new column, 3–48
bugcheck files, 3–53
new features, 1–24 to 1–32
on Digital UNIX, 2–4
restrictions, 2–8 to 2–17, 2–23 to 2–24

SQL-I-UNMATEND error, 2–23
SQL module language

argument count checking, 2–5
connection and, 3–57
recompiling on Digital UNIX, 3–39

SQL module processor
C_PROTOTYPES command line qualifier, 1–30
initializing handle, 3–38
LOWERCASE_PROCEDURE_NAMES qualifier,

4–2
SQL precompiler

initializing handle, 3–38
–lrdbsql shared object, 4–2
–[no]extend_source qualifier, 1–30

.sqlrc configuration file, 3–72
SQL_ALTERNATE_SERVICE_NAME

configuration parameter, 1–11
sql_rdb_headers.h header file, 1–32
sql_sqlda.h header file, 1–32
Stall Messages screen

filter option, 1–49
Stopping the AIJ log server, 4–3
Storage area, 3–22

adding, 2–8
cascading delete, 1–25
default, 1–25
extending, 1–26

Storage area devices
displaying information with Performance

Monitor, 1–49
displaying page lock information, 1–46

Storage map
definition, 2–9
for table with data, 1–26
performance enhancement, 3–10
single area, 3–36
strict partitioning, 1–24
table with data, 3–40
vertical partitioning, 1–24

Index–11

Stored function
creating, 1–28
dropping, 1–29
IMPORT and, 3–46
invoking, 1–28
outline for, 1–26

Stored procedure, 3–60
dropping, 1–29
IMPORT and, 3–46

Stored routine
side effect, 2–13

STORE USING clause, 3–36
Strict partitioning, 1–24, 2–7
Summary Cache Statistics screen, 1–48
SYSDATE function, 1–31
SYSGEN parameter screen, 1–48
System global area API, 1–7
System metadata, 1–50 to 1–56
System metadata index corruption, 3–13
System space buffer (SSB), 1–9
System table, 1–50 to 1–56

cardinality, 3–19
moving, 1–25
RMU Convert and, 2–3

T
Table

deleting data, 1–27
system, 1–50
temporary, 1–27

Tape drive
on Digital UNIX, 2–24

Tape labeling
RMU Backup After_Journal command and,

1–34
RMU Backup command and, 1–34
RMU Optimize After_Journal command and,

1–38
Tape loader, 1–32, 3–63
Tape restriction

on Digital UNIX, 2–20, 2–24
TCP/IP network protocol, 1–7, 1–11
Temporary table, 1–27

configuration parameter and, 1–27
logical name and, 1–27

Temporary work file
location of, 1–32

Terminating process
global buffer and, 3–5

Threshold value
detected asynchronous prefetch, 1–28

TIMESTAMP data type, 3–36
TIMESTAMP literal, 3–22
TRACE statement, 3–32
Transaction, 3–60

committing, 3–8
cursors stay open across, 1–28

Transaction (cont’d)
exclusive, 3–50
multiple databases and, 3–13

Transaction mode
setting, 1–31

Transaction_Mode qualifier
to Oracle RMU commands, 4–2

Translated image, 2–3
Trigger

unexpected firing
fixed, 3–55

TRIM function
dynamic SQL, 3–52

TRUNCATE TABLE statement, 1–27
TSN values, 1–8
Two-phase commit protocol, 2–21

on Digital UNIX, 1–15
Performance Monitor screen, 1–47

Two-phase commit Statistics screen, 1–47

U
UCX service, 1–11
UDCURDEL exception, 3–31
Undetected deadlock, 3–16
Uniform page

zero logical number, 3–61
UNIQUE constraint, 3–46
UNIX operating system

See Digital UNIX
UPDATABLE clause

DECLARE variable statement, 1–29
UPDATE statement, 3–11, 3–36
USING clause

ALTER STORAGE MAP, 3–37

V
Value expression

CAST, 3–23
VARBYTE data type

See BYTE VARYING data type
Vertical partitioning, 1–24

modifying, 2–9
VEST utility, 2–3
View

ALTER DOMAIN statement and, 3–32
ALTER TABLE statement and, 3–32
COMPUTED BY column and, 3–31
importing and exporting, 1–25
interval and, 3–52
RESERVING clause and, 3–37
SELECT DISTINCT, 3–42
SELECT statement and, 3–41

Index–12

W
WAIT clause

ALTER DATABASE statement, 1–26
Web software

Rdb Web Agent, 1–3
WITH LIMIT OF clause, 3–36
Workload collection, 1–9, 1–35

Hot Standby option and, 2–2
World Wide Web

Rdb Web Agent and, 1–3

WWW
See World Wide Web

X
X/Open standard, 1–15
XA transaction, 1–15

Z
Zigzag match join, 1–10

Index–13

